298 research outputs found
The Rotation Average in Lightcone Time-Ordered Perturbation Theory
We present a rotation average of the two-body scattering amplitude in the
lightcone time()-ordered perturbation theory. Using a rotation average
procedure, we show that the contribution of individual time-ordered diagram can
be quantified in a Lorentz invariant way. The number of time-ordered diagrams
can also be reduced by half if the masses of two bodies are same. In the
numerical example of theory, we find that the higher Fock-state
contribution is quite small in the lightcone quantization.Comment: 25 pages, REVTeX, epsf.sty, 69 eps file
Role of retardation in 3-D relativistic equations
Equal-time Green's function is used to derive a three-dimensional integral
equation from the Bethe-Salpeter equation. The resultant equation, in the
absence of anti-particles, is identical to the use of time-ordered diagrams,
and has been used within the framework of coupling to study the
role of energy dependence and non-locality when the two-body potential is the
sum of -exchange and crossed exchange. The results show that
non-locality and energy dependence make a substantial contribution to both the
on-shell and off-shell amplitudes.Comment: 17 pages, RevTeX; 8 figures. Accepted for publication in Phys. Rev.
C56 (Nov. 97
Trouble in Asymptopia---the Hulthen Model on the Light Front
We use light-front dynamics to calculate the electromagnetic form-factor for
the Hulthen model of the deuteron. For small momentum transfer Q^2 < 5 GeV^2
the relativistic effects are quite small. For Q^2 = 11 GeV^2 there is about a
13% discrepancy between the relativistic and non-relativistic approaches. For
asymptotically large momentum transfer, however, the light-front form factor,
log Q^2 /Q^4, markedly differs from the non-relativistic version, 1/Q^4. This
behavior is also present for any wave function, such as those obtained from
realistic potential models, which can be represented as a sum of Yukawa
functions. Furthermore, the asymptotic behavior is in disagreement with the
Drell-Yan-West relation. We investigate precisely how to determine the
asymptotic behavior and confront the problem underlying troublesome form
factors on the light front.Comment: 20 pages, 8 figures Accepted by Phys. Rev
Relativistic three-particle scattering equations
We derive a set of relativistic three-particle scattering equations in the
three-particle c.m. frame employing a relativistic three-particle propagator
suggested long ago by Ahmadzadeh and Tjon in the c.m. frame of a two-particle
subsystem. We make the coordinate transformation of this propagator from the
c.m. frame of the two-particle subsystem to the three-particle c.m. frame. We
also point out that some numerical applications of the Ahmadzadeh and Tjon
propagator to the three-nucleon problem use unnecessary nonrelativistic
approximations which do not simplify the computational task, but violate
constraints of relativistic unitarity and/or covariance.Comment: 5pages, text and one ps figure (in revtex) include
Entanglement of Fock-space expansion and covariance in light-front Hamiltonian dynamics
We investigate in a model with scalar ``nucleons'' and mesons the
contributions of higher Fock states that are neglected in the ladder
approximation of the Lippmann-Schwinger equation. This leads to a breaking of
covariance, both in light-front and in instant-form Hamiltonian dynamics. The
lowest Fock sector neglected has two mesons in the intermediate state and
corresponds to the stretched box. First we show in a simplified example that
the contributions of higher Fock states are much smaller on the light-front
than in instant-form dynamics. Then we show for a scattering amplitude above
threshold that the stretched boxes are small, however, necessary to retain
covariance. For an off energy-shell amplitude covariance is not necessarily
maintained and this is confirmed by our calculations. Again, the stretched
boxes are found to be small.Comment: 17 pages, revtex, 14 figures, submitted to Phys.Rev.
Light-Front Bethe-Salpeter Equation
A three-dimensional reduction of the two-particle Bethe-Salpeter equation is
proposed. The proposed reduction is in the framework of light-front dynamics.
It yields auxiliary quantities for the transition matrix and the bound state.
The arising effective interaction can be perturbatively expanded according to
the number of particles exchanged at a given light-front time. An example
suggests that the convergence of the expansion is rapid. This result is
particular for light-front dynamics. The covariant results of the
Bethe-Salpeter equation can be recovered from the corresponding auxiliary
three-dimensional ones. The technical procedure is developed for a two-boson
case; the idea for an extension to fermions is given. The technical procedure
appears quite practicable, possibly allowing one to go beyond the ladder
approximation for the solution of the Bethe-Salpeter equation. The relation
between the three-dimensional light-front reduction of the field-theoretic
Bethe-Salpeter equation and a corresponding quantum-mechanical description is
discussed.Comment: 42 pages, 5 figure
Two-fermion relativistic bound states in Light-Front Dynamics
In the Light-Front Dynamics, the wave function equations and their numerical
solutions, for two fermion bound systems, are presented. Analytical expressions
for the ladder one-boson exchange interaction kernels corresponding to scalar,
pseudoscalar, pseudovector and vector exchanges are given. Different couplings
are analyzed separately and each of them is found to exhibit special features.
The results are compared with the non relativistic solutions.Comment: 40 pages, to be published in Phys. Rev. C, .tar.gz fil
The Benthic Boundary Layer: geochemical and oceanographic data from the GEOSTAR-2 observatory
Geochemical and oceanographic data, acquired throughout 6 months by the GEOSTAR-2 benthic observatory in southern Tyrrhenian Sea, evidenced ocean-lithosphere interactions in the 1900-m deep Benthic Boundary Layer (BBL), distinguishing two water masses with different origin and, possibly, benthic residence time. Gas concentration, helium isotopic ratios, radioactivity, temperature, salinity and vertical component of the current converged towards the indication of a BBL characterised by a colder and fresher western water (WW), which is episodically displaced by the cascading of the warmer and saltier Eastern Overflow Water (EOW). The benthic WW has higher concentration of geochemical tracers diffusing from the seafloor sediments. The data set shows the potential of long-term, continuous and multiparametric monitoring in providing unique information which cannot be acquired by traditional, short-term or single-sensor investigations
GAGA Factor Maintains Nucleosome-Free Regions and Has a Role in RNA Polymerase II Recruitment to Promoters
Previous studies have shown that GAGA Factor (GAF) is enriched on promoters with paused RNA Polymerase II (Pol II), but its genome-wide function and mechanism of action remain largely uncharacterized. We assayed the levels of transcriptionally-engaged polymerase using global run-on sequencing (GRO-seq) in control and GAF-RNAi Drosophila S2 cells and found promoter-proximal polymerase was significantly reduced on a large subset of paused promoters where GAF occupancy was reduced by knock down. These promoters show a dramatic increase in nucleosome occupancy upon GAF depletion. These results, in conjunction with previous studies showing that GAF directly interacts with nucleosome remodelers, strongly support a model where GAF directs nucleosome displacement at the promoter and thereby allows the entry Pol II to the promoter and pause sites. This action of GAF on nucleosomes is at least partially independent of paused Pol II because intergenic GAF binding sites with little or no Pol II also show GAF-dependent nucleosome displacement. In addition, the insulator factor BEAF, the BEAF-interacting protein Chriz, and the transcription factor M1BP are strikingly enriched on those GAF-associated genes where pausing is unaffected by knock down, suggesting insulators or the alternative promoter-associated factor M1BP protect a subset of GAF-bound paused genes from GAF knock-down effects. Thus, GAF binding at promoters can lead to the local displacement of nucleosomes, but this activity can be restricted or compensated for when insulator protein or M1BP complexes also reside at GAF bound promoters
Infinite Nuclear Matter on the Light Front: Nucleon-Nucleon Correlations
A relativistic light front formulation of nuclear dynamics is developed and
applied to treating infinite nuclear matter in a method which includes the
correlations of pairs of nucleons: this is light front Brueckner theory. We
start with a hadronic meson-baryon Lagrangian that is consistent with chiral
symmetry. This is used to obtain a light front version of a one-boson-exchange
nucleon-nucleon potential (OBEP). The accuracy of our description of the
nucleon-nucleon (NN) data is good, and similar to that of other relativistic
OBEP models. We derive, within the light front formalism, the Hartree-Fock and
Brueckner Hartree-Fock equations. Applying our light front OBEP, the nuclear
matter saturation properties are reasonably well reproduced. We obtain a value
of the compressibility, 180 MeV, that is smaller than that of alternative
relativistic approaches to nuclear matter in which the compressibility usually
comes out too large. Because the derivation starts from a meson-baryon
Lagrangian, we are able to show that replacing the meson degrees of freedom by
a NN interaction is a consistent approximation, and the formalism allows one to
calculate corrections to this approximation in a well-organized manner. The
simplicity of the vacuum in our light front approach is an important feature in
allowing the derivations to proceed. The mesonic Fock space components of the
nuclear wave function are obtained also, and aspects of the meson and nucleon
plus-momentum distribution functions are computed. We find that there are about
0.05 excess pions per nucleon.Comment: 39 pages, RevTex, two figure
- …