15 research outputs found

    Single Pulse Frequency Compounding Protocol for Superharmonic Imaging

    No full text
    ABSTRACT Second harmonic imaging is currently adopted as standard in commercial echographic systems. A new imaging technique, coined as superharmonic imaging (SHI), combines the 3rd till the 5th harmonics, arising during nonlinear sound propagation. It could further enhance resolution and quality of echographic images. To meet the bandwidth requirement for SHI a dedicated phased array has been developed: a low frequency subarray, intended for transmission, interleaved with a high frequency subarray, used in reception. As the bandwidth of the elements is limited, the spectral gaps in between the harmonics cause multiple reflection artifacts. Recently, we introduce a dual-pulse frequency compounding (DPFC) method to suppress those artifacts at price of a reduced frame rate. In this study we investigate the feasibility of performing the frequency compounding protocol within a single transmission. The traditional DPFC method constructs each trace in a post-processing stage by summing echoes from two emitted pulses, the second slightly frequency-shifted compared to the first. In the newly proposed method, the transmit aperture is divided into two parts: the first half is used to send a pulse at the lower center frequency, while the other half simultaneously transmits at the higher center frequency. The suitability of the protocol for medical imaging applications in terms of the steering capabilities was performed in a simulation study using the FIELD II toolkit. Moreover, an experimental study was performed to deduce the optimal parametric set for implementation of the clinical imaging protocol. The latter was subsequently used to obtain the images of a tissue mimicking phantom containing strongly reflecting wires. For in-vitro acquisitions the SHI probe with interleaved phased array (44 odd elements at 1MHz and 44 even elements at 3.7MHz elements, optimized for echocardiography) was connected to a fully programmable ultrasound system. The results of the Field II simulations demonstrated that the angle between the main and grating lobe amounted to 90 • . The difference in the fundamental pressure level between those lobes was equal to −26.8 dB. Those results suggest that the superharmonic content in the grating lobe was acceptably low. A considerable improvement in the axial resolution of the SHI component (0.73 mm) at −6 dB in comparison with the 3rd harmonic (2.23 mm) was observed. A similar comparison in terms of the lateral resolution slightly favored the superharmonic component by 0.2 mm. Additionally, the images of the tissue mimicking phantom exhibited an absence of the multiple reflection artifacts in the focal and post-focal regions. The new method is equally effective in eliminating the ripple artifacts associated with SHI as the dual pulse technique, while the full frame rate is maintained. This work was funded by the Dutch foundation for technical sciences (STW) and OlDelft. (Delft, the Netherlands)

    Optimization of a phased-array transducer for multiple harmonic imaging in medical applications: frequency and topology

    Get PDF
    Second-harmonic imaging is currently one of the standards in commercial echographic systems for diagnosis, because of its high spatial resolution and low sensitivity to clutter and near-field artifacts. The use of nonlinear phenomena mirrors is a great set of solutions to improve echographic image resolution. To further enhance the resolution and image quality, the combination of the 3rd to 5th harmonics - dubbed the superharmonics - could be used. However, this requires a bandwidth exceeding that of conventional transducers. A promising solution features a phased-array design with interleaved low- and high-frequency elements for transmission and reception, respectively. Because the amplitude of the backscattered higher harmonics at the transducer surface is relatively low, it is highly desirable to increase the sensitivity in reception. Therefore, we investigated the optimization of the number of elements in the receiving aperture as well as their arrangement (topology). A variety of configurations was considered, including one transmit element for each receive element (1/2) up to one transmit for 7 receive elements (1/8). The topologies are assessed based on the ratio of the harmonic peak pressures in the main and grating lobes. Further, the higher harmonic level is maximized by optimization of the center frequency of the transmitted pulse. The achievable SNR for a specific application is a compromise between the frequency-dependent attenuation and nonlinearity at a required penetration depth. To calculate the SNR of the complete imaging chain, we use an approach analogous to the sonar equation used in underwater acoustics. The generated harmonic pressure fields caused by nonlinear wave propagation were modeled with the iterative nonlinear contrast source (INCS) method, the KZK, or the Burger's equation. The optimal topology for superharmonic imaging was an interleaved design with 1 transmit element per 6 receive elements. It improves the SNR by ~5 dB compared wi- - th the interleaved (1/2) design reported in literature. The optimal transmit frequency for superharmonic echocardiography was found to be 1.0 to 1.2 MHz. For superharmonic abdominal imaging this frequency was found to be 1.7 to 1.9 MHz. For 2nd-harmonic echocardiography, the optimal transmit frequency of 1.8 MHz reported in the literature was corroborated with our simulation result
    corecore