25 research outputs found
Confining the sampling volume for Fluorescence Correlation Spectroscopy using a sub-wavelength sized aperture
For the observation of single molecule dynamics with fluorescence fluctuation spectroscopy (FFS) very low fluorophore concentrations are necessary. For in vitro measurements, this requirement is easy to fulfill. In biology however, micromolar concentrations are often encountered and may pose a real challenge to conventional FFS methods based on confocal instrumentation. We show a higher confinement of the sampling volume in the near- field of sub-wavelength sized apertures in a thin gold film. The gold apertures have been measured and characterized with fluorescence correlation spectroscopy (FCS), indicating light confinement beyond the far-field diffraction limit. We measured a reduction of the effective sampling volume by an order of magnitude compared to confocal instrumentation. (c) 2006 Optical Society of America
Phenotypic Detection of Clonotypic B Cells in Multiple Myeloma by Specific Immunoglobulin Ligands Reveals their Rarity in Multiple Myeloma
In multiple myeloma, circulating “clonotypic” B cells, that express the immunoglobulin rearrangement of the malignant plasma cell clone, can be indirectly detected by PCR. Their role as potential “feeder” cells for the malignant plasma cell pool remains controversial. Here we established for the first time an approach that allows direct tracking of such clonotypic cells by labeling with patient-specific immunoglobulin ligands in 15 patients with myeloma. Fifty percent of patients showed evidence of clonotypic B cells in blood or bone marrow by PCR. Epitope-mimicking peptides from random libraries were selected on each patient's individual immunoglobulin and used as ligands to trace cells expressing the idiotypic immunoglobulin on their surface. We established a flow cytometry and immunofluorescence protocol to track clonotypic B cells and validated it in two independent monoclonal B cell systems. Using this method, we found clonotypic B cells in only one out of 15 myeloma patients. In view of the assay's validated sensitivity level of 10−3, this surprising data suggests that the abundance of such cells has been vastly overestimated in the past and that they apparently represent a very rare population in myeloma. Our novel tracing approach may open perspectives to isolate and analyze clonotypic B cells and determine their role in myeloma pathobiology
Parallel Confocal Detection of Single Biomolecules using Diffractive Optics and Integrated Detector Units
The past few years we have witnessed a tremendous surge of interest in so-called array-based miniaturised analytical systems due to their value as extremely powerful tools for high-throughput sequence analysis, drug discovery and development, and diagnostic tests in medicine (see articles in Issue I). Terminologies that have been used to describe these array-based bioscience systems include (but are not limited to): DNA-chip, microarrays, microchip, biochip, DNA-microarrays and genome chip. Potential technological benefits of introducing these miniaturised analytical systems include improved accuracy, multiplexing, lower sample and reagent consumption, disposability, and decreased analysis times, just to mention a few examples. Among the many alternative principles of detection-analysis (e.g. chemiluminescence, electroluminescence and conductivity), fluorescence-based techniques are widely used, examples being fluorescence resonance energy transfer, fluorescence quenching, fluorescence polarisation, time-resolved fluorescence, and fluorescence fluctuation spectroscopy (see articles in Issue II). Time-dependent fluctuations of fluorescent biomolecules with different molecular properties, like molecular weight, translational and rotational diffusion time, colour and lifetime, potentially provide all the kinetic and thermodynamic information required in analysing complex interactions. In this mini-review article, we present recent extensions aimed to implement parallel laser excitation and parallel fluorescence detection that can lead to even further increase in throughput in miniaturised array-based analytical systems. We also report on developments and characterisations of multiplexing extension that allow multifocal laser excitation together with matched parallel fluorescence detection for parallel confocal dynamical fluorescence fluctuation studies at the single biomolecule level
Electron multiplying charge-coupled device camera based fluorescence correlation spectroscopy
10.1021/ac0600959Analytical Chemistry78103444-3451ANCH
Response characteristics of arsenic-sensitive bioreporters expressing the gfp reporter gene
This paper describes the development of an analytical technique for arsenic analyses that is based on genetically-modified bioreporter bacteria bearing a gene encoding for the production of a green fluorescent protein (gfp). Upon exposure to arsenic (in the aqueous form of arsenite), the bioreporter production of the fluorescent reporter molecule is monitored spectroscopically. We compared the response measured as a function of time and concentration by steady-state fluorimetry (SSF) to that measured by epi-fluorescent microscopy (EFM). SSF is a bulk technique; as such it inherently yields less information, whereas EFM monitors the response of many individual cells simultaneously and data can be processed in terms of population averages or subpopulations. For the bioreporter strain used here, as well as for the literature we cite, the two techniques exhibit similar performance characteristics. The results presented here show that the EFM technique can compete with SSF and shows substantially more promise for future improvement; it is a matter of research interest to develop optimized methods of EFM image analysis and statistical data treatment. EFM is a conduit for understanding the dynamics of individual cell response vs. population response, which is not only a matter of research interest, but is also promising in the practical terms of developing micro-scale analysis
Dual-color Total Internal Reflection Fluorescence Fluctuation Spectroscopy
We developed a dual-color total internal reflection fluorescence (TIRF) system for single molecule imaging and fluorescence fluctuation spectroscopy (FFS). For a performance analysis, we measured a synthetic binding assay with dual-color global fluorescence correlation spectroscopy (2CG-FCS) and dual-color fluorescence intensity distribution analysis (2D-FIDA). We show that dual-color TIR-FFS is a suitable method for measuring coincidence assays at the surface. In particular, our setup has a very high fluorescence collection efficiency resulting in a two- to three-fold increased molecular brightness. Using a customized workbench setup, we improved the setup alignment, the sample handling and the system versatility
Stochastic Approach to Data Analysis in Fluorescence Correlation Spectroscopy
Fluorescence correlation spectroscopy (FCS) has emerged as a powerful technique for measuring low concentrations of fluorescent molecules and their diffusion constants. In FCS, the experimental data is conventionally fit using standard local search techniques, for example, the Marquardt-Levenberg (ML) algorithm. A prerequisite for these categories of algorithms is the sound knowledge of the behavior of fit parameters and in most cases good initial guesses for accurate fitting, otherwise leading to fitting artifacts. For known fit models and with user experience about the behavior of fit parameters, these local search algorithms work extremely well. However, for heterogeneous systems or where automated data analysis is a prerequisite, there is a need to apply a procedure, which treats FCS data fitting as a black box and generates reliable fit parameters with accuracy for the chosen model in hand. We present a computational approach to analyze FCS data by means of a stochastic algorithm for global search called PGSL, an acronym for Probabilistic Global Search Lausanne. This algorithm does not require any initial guesses and does the fitting in terms of searching for solutions by global sampling. It is flexible as well as computationally faster at the same time for multiparameter evaluations. We present the performance study of PGSL for two-component with triplet fits. The statistical study and the goodness of fit criterion for PGSL are also presented. The robustness of PGSL on noisy experimental data for parameter estimation is also verified. We further extend the scope of PGSL by a hybrid analysis wherein the output of PGSL is fed as initial guesses to ML. Reliability studies show that PGSL and the hybrid combination of both perform better than ML for various thresholds of the mean- squared error (MSE)
Prism-based multicolor fluorescence correlation spectrometer
10.1364/OL.31.001310Optics Letters3191310-1312OPLE
Dual-color total internal reflection fluorescence cross-correlation spectroscopy.
We present the development and first application of a novel dual-color total internal reflection (TIR) fluorescence system for single-molecule coincidence analysis and fluorescence cross-correlation spectroscopy (FCCS). As a performance analysis, we measured a synthetic DNA-binding assay, demonstrating this dual-color TIR-FCCS approach to be a suitable method for measuring coincidence assays such as biochemical binding, fusion, or signal transduction at solid/liquid interfaces. Due to the very high numerical aperture of the epi-illumination configuration, our setup provides a very high fluorescence collection efficiency resulting in a two- to three-fold increase in molecular brightness compared to conventional confocal FCCS. Further improvements have been achieved through global analysis of the spectroscopic data
Ultrasensitive reporter protein detection in genetically engineered bacteria.
We demonstrate the use of laser-induced fluorescence confocal spectroscopy to measure analyte-stimulated enhanced green fluorescent protein (egfp) synthesis by genetically modified Escherichia coli bioreporter cells. Induction is measured in cell lysates and, since the spectroscopic focal volume is approximately the size of one bioreporter cell, also in individual live bacteria. This is, to our knowledge, the first ever proof-of-concept work utilizing instrumentation with single-molecule detection capability to monitor bioreporter response. Although we use arsenic inducible bioreporters here, the method is extensible to gfp/egfp bioreporters that are responsive to other substances