796 research outputs found

    Bose-Einstein Condensation in a CO_2-laser Optical Dipole Trap

    Full text link
    We report on the achieving of Bose-Einstein condensation of a dilute atomic gas based on trapping atoms in tightly confining CO_2-laser dipole potentials. Quantum degeneracy of rubidium atoms is reached by direct evaporative cooling in both crossed and single beam trapping geometries. At the heart of these all-optical condensation experiments is the ability to obtain high initial atomic densities in quasistatic dipole traps by laser cooling techniques. Finally, we demonstrate the formation of a condensate in a field insensitive m_F=0 spin projection only. This suppresses fluctuations of the chemical potential from stray magnetic fields.Comment: 8 pages, 5 figure

    Evanescent-wave trapping and evaporative cooling of an atomic gas near two-dimensionality

    Get PDF
    A dense gas of cesium atoms at the crossover to two-dimensionality is prepared in a highly anisotropic surface trap that is realized with two evanescent light waves. Temperatures as low as 100nK are reached with 20.000 atoms at a phase-space density close to 0.1. The lowest quantum state in the tightly confined direction is populated by more than 60%. The system offers intriguing prospects for future experiments on degenerate quantum gases in two dimensions

    All Optical Formation of an Atomic Bose-Einstein Condensate

    Full text link
    We have created a Bose-Einstein condensate of 87Rb atoms directly in an optical trap. We employ a quasi-electrostatic dipole force trap formed by two crossed CO_2 laser beams. Loading directly from a sub-doppler laser-cooled cloud of atoms results in initial phase space densities of ~1/200. Evaporatively cooling through the BEC transition is achieved by lowering the power in the trapping beams over ~ 2 s. The resulting condensates are F=1 spinors with 3.5 x 10^4 atoms distributed between the m_F = (-1,0,1) states.Comment: 4 pages, 4 figures, to appear in Phys. Rev. Let

    Fictitious Magnetic Resonance by Quasi-Electrostatic Field

    Full text link
    We propose a new kind of spin manipulation method using a {\it fictitious} magnetic field generated by a quasi-electrostatic field. The method can be applicable to every atom with electron spins and has distinct advantages of small photon scattering rate and local addressability. By using a CO2\rm{CO_2} laser as a quasi-electrostatic field, we have experimentally demonstrated the proposed method by observing the Rabi-oscillation of the ground state hyperfine spin F=1 of the cold 87Rb\rm{^{87}Rb} atoms and the Bose-Einstein condensate.Comment: 5 pages, 5 figure

    Very long storage times and evaporative cooling of cesium atoms in a quasi-electrostatic dipole trap

    Get PDF
    We have trapped cesium atoms over many minutes in the focus of a CO2_2-laser beam employing an extremely simple laser system. Collisional properties of the unpolarized atoms in their electronic ground state are investigated. Inelastic binary collisions changing the hyperfine state lead to trap loss which is quantitatively analyzed. Elastic collisions result in evaporative cooling of the trapped gas from 25 ÎĽ\muK to 10 ÎĽ\muK over a time scale of about 150 s.Comment: 5 pages, 3 figure

    All-Optical Production of a Degenerate Fermi Gas

    Full text link
    We achieve degeneracy in a mixture of the two lowest hyperfine states of 6^6Li by direct evaporation in a CO2_2 laser trap, yielding the first all-optically produced degenerate Fermi gas. More than 10510^5 atoms are confined at temperatures below 4ÎĽ4 \muK at full trap depth, where the Fermi temperature for each state is 8ÎĽ8 \muK. This degenerate two-component mixture is ideal for exploring mechanisms of superconductivity ranging from Cooper pairing to Bose condensation of strongly bound pairs.Comment: 4 pgs RevTeX with 2 eps figs, to be published in Phys. Rev. Let

    Multiple micro-optical atom traps with a spherically aberrated laser beam

    Full text link
    We report on the loading of atoms contained in a magneto-optic trap into multiple optical traps formed within the focused beam of a CO_{2} laser. We show that under certain circumstances it is possible to create a linear array of dipole traps with well separated maxima. This is achieved by focusing the laser beam through lenses uncorrected for spherical aberration. We demonstrate that the separation between the micro-traps can be varied, a property which may be useful in experiments which require the creation of entanglement between atoms in different micro-traps. We suggest other experiments where an array of these traps could be useful.Comment: 10 pages, 3 figure

    Motional Squashed States

    Full text link
    We show that by using a feedback loop it is possible to reduce the fluctuations in one quadrature of the vibrational degree of freedom of a trapped ion below the quantum limit. The stationary state is not a proper squeezed state, but rather a ``squashed'' state, since the uncertainty in the orthogonal quadrature, which is larger than the standard quantum limit, is unaffected by the feedback action.Comment: 8 pages, 2 figures, to appear in the special Issue "Quantum Correlations and Fluctuations" of J. Opt.

    Entanglement of atoms via cold controlled collisions

    Get PDF
    We show that by using cold controlled collisions between two atoms one can achieve conditional dynamics in moving trap potentials. We discuss implementing two qubit quantum--gates and efficient creation of highly entangled states of many atoms in optical lattices.Comment: 4 pages 3 figure

    Intraindividual Variability and Temporal Stability of Mid-Sleep on Free and Workdays

    Get PDF
    People differ in their sleep timings that are often referred to as a chronotype and can be operationalized as mid-sleep (midpoint between sleep onset and wake-up). The aims of the present studies were to examine intraindividual variability and longer-term temporal stability of mid-sleep on free and workdays, while also considering the effect of age. We used data from a 2-week experience sampling study of British university students (Study 1) and from a panel study of Estonian adults who filled in the Munich Chronotype Questionnaire twice up to 5 years apart (Study 2). Results of Study 1 showed that roughly 50% of the variance in daily mid-sleep scores across the 14-day period was attributed to intraindividual variability as indicated by the intraclass correlation coefficient. However, when the effect of free versus workdays was considered, the intraindividual variability in daily mid-sleep across 2 weeks was 0.71 the size of the interindividual variability. In Study 2, mid-sleep on free and workdays showed good levels of temporal stability—the retest correlations of mid-sleep on free and workdays were 0.66 and 0.58 when measured twice over a period of 0-1 to 5 years. The retest stability of mid-sleep scores on both free and workdays sharply increased from young adulthood and reached their peak when participants were in late 40 to early 50 years of age, indicating that age influences the stability of mid-sleep. Future long-term longitudinal studies are necessary to explore how age-related life circumstances and other possible factors may influence the intraindividual variability and temporal stability of mid-sleep
    • …
    corecore