577 research outputs found

    From twistors to twisted geometries

    Full text link
    In a previous paper we showed that the phase space of loop quantum gravity on a fixed graph can be parametrized in terms of twisted geometries, quantities describing the intrinsic and extrinsic discrete geometry of a cellular decomposition dual to the graph. Here we unravel the origin of the phase space from a geometric interpretation of twistors.Comment: 9 page

    Hidden Quantum Gravity in 3d Feynman diagrams

    Full text link
    In this work we show that 3d Feynman amplitudes of standard QFT in flat and homogeneous space can be naturally expressed as expectation values of a specific topological spin foam model. The main interest of the paper is to set up a framework which gives a background independent perspective on usual field theories and can also be applied in higher dimensions. We also show that this Feynman graph spin foam model, which encodes the geometry of flat space-time, can be purely expressed in terms of algebraic data associated with the Poincare group. This spin foam model turns out to be the spin foam quantization of a BF theory based on the Poincare group, and as such is related to a quantization of 3d gravity in the limit where the Newton constant G_N goes to 0. We investigate the 4d case in a companion paper where the strategy proposed here leads to similar results.Comment: 35 pages, 4 figures, some comments adde

    Canonical analysis of the BCEA topological matter model coupled to gravitation in (2+1) dimensions

    Full text link
    We consider a topological field theory derived from the Chern - Simons action in (2+1) dimensions with the I(ISO(2,1)) group,and we investigate in detail the canonical structure of this theory.Originally developed as a topological theory of Einstein gravity minimally coupled to topological matter fields in (2+1) dimensions, it admits a BTZ black-hole solutions, and can be generalized to arbitrary dimensions.In this paper, we further study the canonical structure of the theory in (2+1) dimensions, by identifying all the distinct gauge equivalence classes of solutions as they result from holonomy considerations. The equivalence classes are discussed in detail, and examples of solutions representative of each class are constructed or identified.Comment: 17 pages, no figure

    Spin foam model from canonical quantization

    Full text link
    We suggest a modification of the Barrett-Crane spin foam model of 4-dimensional Lorentzian general relativity motivated by the canonical quantization. The starting point is Lorentz covariant loop quantum gravity. Its kinematical Hilbert space is found as a space of the so-called projected spin networks. These spin networks are identified with the boundary states of a spin foam model and provide a generalization of the unique Barrette-Crane intertwiner. We propose a way to modify the Barrett-Crane quantization procedure to arrive at this generalization: the B field (bi-vectors) should be promoted not to generators of the gauge algebra, but to their certain projection. The modification is also justified by the canonical analysis of Plebanski formulation. Finally, we compare our construction with other proposals to modify the Barret-Crane model.Comment: 26 pages; presentation improved, important changes concerning the closure constraint and the vertex amplitude; minor correctio

    Bubble divergences from cellular cohomology

    Full text link
    We consider a class of lattice topological field theories, among which are the weak-coupling limit of 2d Yang-Mills theory, the Ponzano-Regge model of 3d quantum gravity and discrete BF theory, whose dynamical variables are flat discrete connections with compact structure group on a cell 2-complex. In these models, it is known that the path integral measure is ill-defined in general, because of a phenomenon called `bubble divergences'. A common expectation is that the degree of these divergences is given by the number of `bubbles' of the 2-complex. In this note, we show that this expectation, although not realistic in general, is met in some special cases: when the 2-complex is simply connected, or when the structure group is Abelian -- in both cases, the divergence degree is given by the second Betti number of the 2-complex.Comment: 5 page

    Quantum geometry from phase space reduction

    Full text link
    In this work we give an explicit isomorphism between the usual spin network basis and the direct quantization of the reduced phase space of tetrahedra. The main outcome is a formula that describes the space of SU(2) invariant states by an integral over coherent states satisfying the closure constraint exactly, or equivalently, as an integral over the space of classical tetrahedra. This provides an explicit realization of theorems by Guillemin--Sternberg and Hall that describe the commutation of quantization and reduction. In the final part of the paper, we use our result to express the FK spin foam model as an integral over classical tetrahedra and the asymptotics of the vertex amplitude is determined.Comment: 33 pages, 1 figur

    Ponzano-Regge model revisited III: Feynman diagrams and Effective field theory

    Full text link
    We study the no gravity limit G_{N}-> 0 of the Ponzano-Regge amplitudes with massive particles and show that we recover in this limit Feynman graph amplitudes (with Hadamard propagator) expressed as an abelian spin foam model. We show how the G_{N} expansion of the Ponzano-Regge amplitudes can be resummed. This leads to the conclusion that the dynamics of quantum particles coupled to quantum 3d gravity can be expressed in terms of an effective new non commutative field theory which respects the principles of doubly special relativity. We discuss the construction of Lorentzian spin foam models including Feynman propagatorsComment: 46 pages, the wrong file was first submitte

    Hidden Quantum Gravity in 4d Feynman diagrams: Emergence of spin foams

    Get PDF
    We show how Feynman amplitudes of standard QFT on flat and homogeneous space can naturally be recast as the evaluation of observables for a specific spin foam model, which provides dynamics for the background geometry. We identify the symmetries of this Feynman graph spin foam model and give the gauge-fixing prescriptions. We also show that the gauge-fixed partition function is invariant under Pachner moves of the triangulation, and thus defines an invariant of four-dimensional manifolds. Finally, we investigate the algebraic structure of the model, and discuss its relation with a quantization of 4d gravity in the limit where the Newton constant goes to zero.Comment: 28 pages (RevTeX4), 7 figures, references adde

    Scalar Asymptotic Charges and Dual Large Gauge Transformations

    Get PDF
    In recent years soft factorization theorems in scattering amplitudes have been reinterpreted as conservation laws of asymptotic charges. In gauge, gravity, and higher spin theories the asymptotic charges can be understood as canonical generators of large gauge symmetries. Such a symmetry interpretation has been so far missing for scalar soft theorems. We remedy this situation by treating the massless scalar field in terms of a dual two-form gauge field. We show that the asymptotic charges associated to the scalar soft theorem can be understood as generators of large gauge transformations of the dual two-form field. The dual picture introduces two new puzzles: the charges have very unexpected Poisson brackets with the fields, and the monopole term does not always have a dual gauge transformation interpretation. We find analogs of these two properties in the Kramers-Wannier duality on a finite lattice, indicating that the free scalar theory has new edge modes at infinity that canonically commute with all the bulk degrees of freedom.Comment: 16 pages, 2 figure

    Holomorphic Simplicity Constraints for 4d Spinfoam Models

    Full text link
    Within the framework of spinfoam models, we revisit the simplicity constraints reducing topological BF theory to 4d Riemannian gravity. We use the reformulation of SU(2) intertwiners and spin networks in term of spinors, which has come out from both the recently developed U(N) framework for SU(2) intertwiners and the twisted geometry approach to spin networks and spinfoam boundary states. Using these tools, we are able to perform a holomorphic/anti-holomorphic splitting of the simplicity constraints and define a new set of holomorphic simplicity constraints, which are equivalent to the standard ones at the classical level and which can be imposed strongly on intertwiners at the quantum level. We then show how to solve these new holomorphic simplicity constraints using coherent intertwiner states. We further define the corresponding coherent spin network functionals and introduce a new spinfoam model for 4d Riemannian gravity based on these holomorphic simplicity constraints and whose amplitudes are defined from the evaluation of the new coherent spin networks.Comment: 27 page
    • …
    corecore