In this work we show that 3d Feynman amplitudes of standard QFT in flat and
homogeneous space can be naturally expressed as expectation values of a
specific topological spin foam model. The main interest of the paper is to set
up a framework which gives a background independent perspective on usual field
theories and can also be applied in higher dimensions. We also show that this
Feynman graph spin foam model, which encodes the geometry of flat space-time,
can be purely expressed in terms of algebraic data associated with the Poincare
group. This spin foam model turns out to be the spin foam quantization of a BF
theory based on the Poincare group, and as such is related to a quantization of
3d gravity in the limit where the Newton constant G_N goes to 0. We investigate
the 4d case in a companion paper where the strategy proposed here leads to
similar results.Comment: 35 pages, 4 figures, some comments adde