1,484 research outputs found

    A study of the social expectations and desires of psychiatric patients.

    Full text link
    Includes 7 figures and 25 tables. Thesis (M.S.)--Boston Universit

    Nanostickers for cells : a model study using cell-nanoparticle hybrid aggregates

    Get PDF
    We present direct evidence that nanoparticles (NPs) can stick together cells that are inherently non-adhesive. Using cadherin-depleted S180 murine cells lines, which exhibit very low cell-cell adhesion, we show that NPs can assemble dispersed single cells into large cohesive aggregates. The dynamics of aggregation, which is controlled by diffusion and collision, can be described as a second-order kinetic law characterized by a rate of collision that depends on the size, concentration, and surface chemistry of the NPs. We model the cell-cell adhesion induced by the "nanostickers'' using a three-state dynamical model, where the NPs are free, adsorbed on the cell membrane or internalized by the cells. We define a "sticking efficiency parameter'' to compare NPs and look for the most efficient type of NP. We find that 20 nm carboxylated polystyrene NPs are more efficient nanostickers than 20 nm silica NPs which were reported to induce fast wound healing and to glue soft tissues. Nanostickers, by increasing the cohesion of tissues and tumors, may have important applications for tissue engineering and cancer treatment.Peer reviewe

    How gluttonous cell aggregates clear substrates coated with microparticles

    Get PDF
    We study the spreading of cell aggregates deposited on adhesive substrates decorated with microparticles (MPs). A cell monolayer expands around the aggregate. The cells on the periphery of the monolayer take up the MPs, clearing the substrate as they progress and forming an aureole of cells filled with MPs. We study the dynamics of spreading and determine the width of the aureole and the level of MP internalization in cells as a function of MP size, composition, and density. From the radius and width of the aureole, we quantify the volume fraction of MPs within the cell, which leads to an easy, fast, and inexpensive measurement of the cell - particle internalization.Peer reviewe

    Azopyridine : a smart photo- and chemo-responsive substituent for polymers and supramolecular assemblies

    Get PDF
    Azo dyes, such as azobenzene, are able to convert absorbed light into motion or deformation on the macroscopic scale on the basis of their remarkable ability to undergo repeatedly and in 100% yield reversibletrans-to-cisphotoisomerization. Current needs for multiresponsive and fast photoswitches have led to the development of heteroaryl azo dyes, such as azopyridine. This remarkable azo compound combines the photoresponse of the azo chromophore with the chemistry of the pyridine ring, in particular its responsiveness to changes in pH and its ability to form hydrogen- and halogen-bonds. This mini-review summarizes key features of the photoisomerization of polymer-tethered azopyridine in aqueous media and describes a few recent research accomplishments in emerging areas that have benefited of the fast thermalcis-to-transrelaxation characteristics of azopyridinium or H-bonded azopyridine. It also discusses the effects of the photoisomerization of azopyridine on the thermoresponsive properties of azopyridine-tethered heat-sensitive polymers. Overall, azopyridine is a highly versatile actuator to consider when designing photo/multiresponsive polymeric materials.Peer reviewe

    Phototropic Multiresponsive Active Nanogels

    Get PDF
    Aqueous dispersions of nanogels that respond to switches in environmental pH and/or temperature by changes in their hydrodynamic radius (R-h) and/or zeta-potential are prepared by reversible addition-fragmentation chain-transfer (RAFT) polymerization-induced thermal (70 degrees C) self-assembly (PITSA) of N-isopropylacrylamide (NIPAM) in the presence of a poly(methacrylic acid) (PMAA)-substituted macromolecular chain transfer agent and a cross-linker. Photochromic spiropyran (SP) moieties are coupled to the carboxylic acid groups of the nanogels. Upon UV irradiation, the neutral SP isomerizes to the zwitterionic merocyanine (ME) form. Upon UV light irradiation, microgels formed by assembly of SP nanogels undergo a collective motion toward the UV-light source.Peer reviewe

    Spreading of Cell Aggregates on Zwitterion-Modified Chitosan Films

    Get PDF
    The sulfobetaine (SB) moiety, which comprises a quaternary ammonium group linked to a negatively charged sulfonate ester, is known to impart nonfouling properties to interfaces coated with polysulfobetaines or grafted with SB-polymeric brushes. Increasingly, evidence emerges that the SB group is, overall, a better antifouling group than the phosphorylcholine (PC) moiety extensively used in the past. We report here the synthesis of a series of SB-modified chitosans (CH-SB) carrying between 20 and 40 mol % SB per monosaccharide unit. Chitosan (CH) itself is a naturally derived copolymer of glucosamine and N-acetyl-glucosamine linked with a beta-1,4 bond. Analysis by quartz crystal microbalance with dissipation (QCM-D) indicates that CH-SB films (thickness similar to 20 nm) resist adsorption of bovine serum albumin (BSA) with increasing efficiency as the SB content of the polymer augments (surface coverage similar to 15 mu g cm(-2) for films of CH with 40 mol % SB). The cell adhesivity of CH-SB films coated on glass was assessed by determining the spreading dynamics of CT26 cell aggregates. When placed on chitosan films, known to be cell-adhesive, the CT26 cell aggregates spread by forming a cell monolayer around them. The spreading of CT26 cell aggregates on zwitterion-modified chitosans films is thwarted remarkably. In the cases of CH-SB30 and CH-SB40 films, only a few isolated cells escape from the aggregates. The extent of aggregate spreading, quantified based on the theory of liquid wetting, provides a simple in vitro assay of the nonfouling properties of substrates toward specific cell lines. This assay can be adopted to test and compare the fouling characteristics of substrates very different from the chemical viewpoint.Peer reviewe

    Inert-living matter, when cells and beads play together

    Get PDF
    While both active and granular matter have been extensively studied, here we investigate what happens when we mix the two of them, in a model system combining microparticles and cell assemblies. On a substrate covered with polystyrene or silica microparticles, we notice two regimes in the spreading of a cell aggregate: light particles are pushed by the cells and form a ring, which bonds to the substrate by adhesion forces that oppose spreading, while for heavy particles, the cell monolayer spreads above the particle bed. In both cases, cell activity is transmitted to inert beads, leading to the formation of cell-microparticle aggregates, which flicker and diffuse. We then study the formation and the spreading of hybrid aggregates of microparticles and living cells and observe phase separations and jamming transitions. Our study may have implications on processes such as cancer metastasis and development, and may guide cancer therapies based on inert particles. Interaction of active matter with geometrical and topological constraints is a topic of intense research in the recent few years due to its potential for design and control of active flow patterns. Here, the authors experimentally study the growth and expansion of cell aggregates interleaved by passive colloidal particles, showing that inert particles can reshape the collective pattern formation in cellular aggregates.Peer reviewe

    Transition-Metal-Doped NIR-Emitting Silicon Nanocrystals

    Get PDF
    Impurity-doping in nanocrystals significantly affects their electronic properties and diversifies their applications. Herein, we report the synthesis of transition metal (Mn, Ni, Co, Cu)-doped oleophilic silicon nanocrystals (SiNCs) through hydrolysis/polymerization of triethoxysilane with acidic aqueous metal salt solutions, followed by thermal disproportionation of the resulting gel into a doped-Si/SiO2 composite that, upon HF etching and hydrosilylation with 1-n-octadecene, produces free-standing octadecyl-capped doped SiNCs (diameter approximate to 3 to 8 nm; dopant <0.2 atom %). Metal-doping triggers a red-shift of the SiNC photoluminescence (PL) of up to 270 nm, while maintaining high PL quantum yield (26% for Co doping).Peer reviewe

    Dehydration, Micellization, and Phase Separation of Thermosensitive Polyoxazoline Star Block Copolymers in Aqueous Solution

    Get PDF
    Suitably end-functionalized diblock copolymers (2-isopropyl-2oxazoline)-b-(2-ethyl-2-oxazoline) (PIPOZ-b-PEOZ) were linked to a tetrafunctional core to synthesize two isomeric thermosensitive 4-arm star block polymers which have the PIPOZ block near the core, core-(PIPOZ-bPEOZ)(4), or near the outer surface the star polymer, core-(PEOZ-b-PIPOZ)(4) The solution properties of the star copolymers in water were monitored by turbidimetry, microcalorimetry, and small-angle X-ray scattering (SAXS). The dehydration and cloud-point temperatures of both core-(PIPOZ-b-PEOZ)(4) and core-(PEOZ-b-PIPOZ)(4) in water are in the vicinity of 50 degrees C. Above this temperature, core-(PIPOZ-b-PEOZ)(4) forms starlike aggregates or star micelle, whereas core-(PEOZ-b-PIPOZ)(4) remains isolated, with no sign of aggregation. These results demonstrate the importance of chain architecture on the association of thermosensitive tetra-arm star block copolymers in water above the dehydration temperature.Peer reviewe
    corecore