1,322 research outputs found

    Screening of point charges in Si quantum dots

    Full text link
    The screening of point charges in hydrogenated Si quantum dots ranging in diameter from 10 A to 26 A has been studied using first-principles density-functional methods. We find that the main contribution to the screening function originates from the electrostatic field set up by the polarization charges at the surface of the nanocrystals. This contribution is well described by a classical electrostatics model of dielectric screening

    Excited-state relaxation in PbSe quantum dots

    Get PDF
    In solids the phonon-assisted, nonradiative decay from high-energy electronic excited states to low-energy electronic excited states is picosecond fast. It was hoped that electron and hole relaxation could be slowed down in quantum dots, due to the unavailability of phonons energy matched to the large energy-level spacings (“phonon-bottleneck”). However, excited-state relaxation was observed to be rather fast (1 ps) in InP, CdSe, and ZnO dots, and explained by an efficient Auger mechanism, whereby the excess energy of electrons is nonradiatively transferred to holes, which can then rapidly decay by phonon emission, by virtue of the densely spaced valence-band levels. The recent emergence of PbSe as a novel quantum-dot material has rekindled the hope for a slow down of excited-state relaxation because hole relaxation was deemed to be ineffective on account of the widely spaced hole levels. The assumption of sparse hole energy levels in PbSe was based on an effective-mass argument based on the light effective mass of the hole. Surprisingly, fast intraband relaxation times of 1–7 ps were observed in PbSe quantum dots and have been considered contradictory with the Auger cooling mechanism because of the assumed sparsity of the hole energy levels. Our pseudopotential calculations, however, do not support the scenario of sparse hole levels in PbSe: Because of the existence of three valence-band maxima in the bulk PbSe band structure, hole energy levels are densely spaced, in contradiction with simple effective-mass models. The remaining question is whether the Auger decay channel is sufficiently fast to account for the fast intraband relaxation. Using the atomistic pseudopotential wave functions of Pb2046Se2117 and Pb260Se249 quantum dots, we explicitly calculated the electron-hole Coulomb integrals and the PS electron Auger relaxation rate. We find that the Auger mechanism can explain the experimentally observed PS intraband decay time scale without the need to invoke any exotic relaxation mechanisms

    Strict inequalities of critical values in continuum percolation

    Full text link
    We consider the supercritical finite-range random connection model where the points x,yx,y of a homogeneous planar Poisson process are connected with probability f(∣y−x∣)f(|y-x|) for a given ff. Performing percolation on the resulting graph, we show that the critical probabilities for site and bond percolation satisfy the strict inequality pcsite>pcbondp_c^{\rm site} > p_c^{\rm bond}. We also show that reducing the connection function ff strictly increases the critical Poisson intensity. Finally, we deduce that performing a spreading transformation on ff (thereby allowing connections over greater distances but with lower probabilities, leaving average degrees unchanged) {\em strictly} reduces the critical Poisson intensity. This is of practical relevance, indicating that in many real networks it is in principle possible to exploit the presence of spread-out, long range connections, to achieve connectivity at a strictly lower density value.Comment: 38 pages, 8 figure

    Radiative recombination of charged excitons and multiexcitons in CdSe quantum dots

    Full text link
    We report semi-empirical pseudopotential calculations of emission spectra of charged excitons and biexcitons in CdSe nanocrystals. We find that the main emission peak of charged multiexcitons - originating from the recombination of an electron in an s-like state with a hole in an s-like state - is blue shifted with respect to the neutral mono exciton. In the case of the negatively charged biexciton, we observe additional emission peaks of lower intensity at higher energy, which we attribute to the recombination of an electron in a p state with a hole in a p state

    MicroRNA-433 Dampens Glucocorticoid Receptor Signaling, Impacting Circadian Rhythm and Osteoblastic Gene Expression

    Get PDF
    FUNDING This work was supported by the National Institute of Arthritis and Musculoskeletal and Skin Diseases of the National Institutes of Health [AR44877]; the National Institutes for Dental and Craniofacial Research [5T90DE21989]; a Grant-in-Aid award from the American Society for Bone and Mineral Research; the UConn Health Center Research Advisory council; and the Center for Molecular Medicine at UConn Health. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.Peer reviewedPublisher PD

    Covering algorithms, continuum percolation and the geometry of wireless networks

    Get PDF
    Continuum percolation models in which each point of a two-dimensional Poisson point process is the centre of a disc of given (or random) radius r, have been extensively studied. In this paper, we consider the generalization in which a deterministic algorithm (given the points of the point process) places the discs on the plane, in such a way that each disc covers at least one point of the point process and that each point is covered by at least one disc. This gives a model for wireless communication networks, which was the original motivation to study this class of problems. We look at the percolation properties of this generalized model, showing that an unbounded connected component of discs does not exist, almost surely, for small values of the density lambda of the Poisson point process, for any covering algorithm. In general, it turns out not to be true that unbounded connected components arise when lambda is taken sufficiently high. However, we identify some large families of covering algorithms, for which such an unbounded component does arise for large values of lambda. We show how a simple scaling operation can change the percolation properties of the model, leading to the almost sure existence of an unbounded connected component for large values of lambda, for any covering algorithm. Finally, we show that a large class of covering algorithms, which arise in many practical applications, can get arbitrarily close to achieving a minimal density of covering discs. We also construct an algorithm that achieves this minimal density

    Impact of boundaries on fully connected random geometric networks

    Full text link
    Many complex networks exhibit a percolation transition involving a macroscopic connected component, with universal features largely independent of the microscopic model and the macroscopic domain geometry. In contrast, we show that the transition to full connectivity is strongly influenced by details of the boundary, but observe an alternative form of universality. Our approach correctly distinguishes connectivity properties of networks in domains with equal bulk contributions. It also facilitates system design to promote or avoid full connectivity for diverse geometries in arbitrary dimension.Comment: 6 pages, 3 figure

    Generation of large scale digital evaluation models via synthetic aperture radar interferometry

    Get PDF
    We investigate the possibility to generate a large-scale Digital Elevation Model by applying the Synthetic Aperture Radar interferometry technique and using tandem data acquired by the ERS-1/ERS-2 sensors. The presented study is mainly focused on the phase unwrapping step that represents the most critical point of the overall processing chain. In particular, we concentrate on the unwrapping problems related to the use of a large ERS tandem data set that, in order to be unwrapped, must be partitioned. The paper discusses the inclusion of external information (even rough) of the scene topography, the application of a region growing unwrapping technique and the insertion of possible constraints on the phase to be retrieved in order to minimize the global unwrapping errors. Our goal is the generation of a digital elevation model relative to an area of 300 km by 100km located in the southern part of Italy. Comparisons between the achieved result and a precise digital terrain model, relative to a smaller area, are also included

    Temperature Dependent Empirical Pseudopotential Theory For Self-Assembled Quantum Dots

    Full text link
    We develop a temperature dependent empirical pseudopotential theory to study the electronic and optical properties of self-assembled quantum dots (QDs) at finite temperature. The theory takes the effects of both lattice expansion and lattice vibration into account. We apply the theory to the InAs/GaAs QDs. For the unstrained InAs/GaAs heterostructure, the conduction band offset increases whereas the valence band offset decreases with increasing of the temperature, and there is a type-I to type-II transition at approximately 135 K. Yet, for InAs/GaAs QDs, the holes are still localized in the QDs even at room temperature, because the large lattice mismatch between InAs and GaAs greatly enhances the valence band offset. The single particle energy levels in the QDs show strong temperature dependence due to the change of confinement potentials. Because of the changes of the band offsets, the electron wave functions confined in QDs increase by about 1 - 5%, whereas the hole wave functions decrease by about 30 - 40% when the temperature increases from 0 to 300 K. The calculated recombination energies of exciton, biexciton and charged excitons show red shifts with increasing of the temperature, which are in excellent agreement with available experimental data

    Introducing Agility in Hybrid Communication Systems and Sensors

    Get PDF
    This paper presents a new approach in dealing with hybridization issues in communication systems or sensors. The thrust is to separate the logical network (sensor) infrastructure from the physical one. Here we show how we can exploit concepts such as persistent identification which we believe is crucial to be able to connect a variety of heterogeneous devices in a network that grows, and that is robust to failures. A vital characteristic of our architecture is the ability to accommodate a variety of heterogeneous devices and subsystems. Several examples of hybridization of sensors at the physical, logical, and network levels are presented and discussed
    • 

    corecore