141 research outputs found

    Story-based Video Retrieval in TV series using Plot Synopses

    Full text link
    We present a novel approach to search for plots in the story-line of structured videos such as TV series. To this end, we propose to align natural language descriptions of the videos, such as plot synopses, with the corresponding shots in the video. Guided by subtitles and person identities the align-ment problem is formulated as an optimization task over all possible assignments and solved efficiently using dynamic programming. We evaluate our approach on a novel dataset comprising of the complete season 5 of Buffy the Vampire Slayer, and show good alignment performance and the abil-ity to retrieve plots in the storyline

    Translational and rotational diffusion coefficients in nanofluids from polarized dynamic light scattering

    Get PDF
    Nanofluids representing nanometer-sized solid particles dispersed in liquids are of interest in many fields of process and energy engineering, e.g., heat transfer, catalysis, and the design of functionalized materials [1]. The physical, chemical, optical, and electronic properties of nanofluids are strongly driven by the size, shape, surface potential, and concentration of the nanoparticles. For the analysis of diffusive processes in nanofluids allowing access to, e.g., particle size and its distribution, dynamic light scattering (DLS) is the state-of-the-art technique. It is based on the analysis of microscopic fluctuations originating from the random thermal movement of particles in the continuous liquid phase at macroscopic thermodynamic equilibrium. For anisotropic particles or particle aggregates, besides translational diffusion also rotational diffusion occurs. To obtain the sum of the orientation-averaged translational (DT) and rotational (DR) diffusivities by depolarized DLS [2], a homodyne detection scheme is usually applied which can hardly be fulfilled in the experimental realization. Furthermore, the experiments are restricted to limited ranges for temperature, particle concentration, and viscosity

    An industrial reference fluid for moderately high viscosity

    Get PDF
    In industrial practice, there is a demand for a reference standard for viscosity that is established for a readily available fluid to simplify the calibration of industrial viscometers for moderately high viscosities [(50 to 125) mPa · s]. Diisodecyl phthalate (DIDP) has been suggested as that reference fluid, and a number of studies of its properties have been carried out in several laboratories throughout the world, within the auspices of a project coordinated by the International Association for Transport Properties. That project has now progressed to the point where it is possible to collate the results of studies of the viscosity of the fluid by a number of different techniques, so as to lead to a proposed standard reference value which will be included in the paper. To support this recommended value, the various measurements conducted have been critically reviewed, and the sample purity and other factors affecting the viscosity have been studied. Density and surface tension measurements have also been performed. This paper does not describe the individual viscosity determinations carried out in independent laboratories because these are the subject of individual publications, but it does describe the ancillary studies conducted and their relevance to the viscosity standard. In addition, the paper contains recommended values for the viscosity of liquid DIDP. The samples of DIDP to which the recommended values refer are isomeric mixtures available commercially from certain suppliers, with a minimum purity by gas chromatography of 99.8 %. The recommended values result from a critical examination of all the measurements conducted to date and are supported by careful arguments dealing with the likely effects of the isomeric content of the sample as well as of other impurities. The proposed reference standard is intended particularly to serve an industrial need for a readily available calibration material with a viscosity close to that required in practical situations. To that end, the recommended value has an overall relative uncertainty of approximately 1 %. It is therefore not intended to supersede for the reference value for the viscosity of water at 20 °C, which is known much more accurately, but rather to complement it

    Topological Defects in Nematic Droplets of Hard Spherocylinders

    Full text link
    Using computer simulations we investigate the microscopic structure of the singular director field within a nematic droplet. As a theoretical model for nematic liquid crystals we take hard spherocylinders. To induce an overall topological charge, the particles are either confined to a two-dimensional circular cavity with homeotropic boundary or to the surface of a three-dimensional sphere. Both systems exhibit half-integer topological point defects. The isotropic defect core has a radius of the order of one particle length and is surrounded by free-standing density oscillations. The effective interaction between two defects is investigated. All results should be experimentally observable in thin sheets of colloidal liquid crystals.Comment: 13 pages, 16 figures, Phys. Rev.

    Modeling adsorption in metal-organic frameworks with open metal sites : propane/propylene separations

    Get PDF
    We present a new approach for modeling adsorption in metal-organic frameworks (MOFs) with unsaturated metal centers and apply it to the challenging propane/propylene separation in copper(II) benzene-1,3,5-tricarboxylate (CuBTC). We obtain information about the specific interactions between olefins and the open metal sites of the MOP using quantum mechanical density functional theory. A proper consideration of all the relevant contributions to the adsorption energy enables us to extract the component that is due to specific attractive interactions between the pi-orbitals of the alkene and the coordinatively unsaturated metal. This component is fitted using a combination of a Morse potential and a power law function and is then included into classical grand canonical Monte Carlo simulations of adsorption. Using this modified potential model, together with a standard Lennard-Jones model, we are able to predict the adsorption of not only propane (where no specific interactions are present), but also of propylene (where specific interactions are dominant). Binary adsorption isotherms for this mixture are in reasonable agreement with ideal adsorbed solution theory predictions. We compare our approach with previous attempts to predict adsorption in MOFs with open metal sites and suggest possible future routes for improving our model

    Utjecaj desflurana i sevoflurana na razine oksidativnog stresa u tkivima štakora

    Get PDF
    General anaesthetics are often used in patients who are under oxidative stress due to a critical illness or surgical trauma. Some anaesthetics may worsen oxidative stress and some may act as antioxidants. The aim of this study was to evaluate liver, brain, kidney, and lung tissue oxidative stress in rats exposed to desflurane and sevoflurane and in unexposed rats. The animals were divided in three groups: control (received only air); sevoflurane (8 %), and desflurane (4 %). After four hours of exposure, we evaluated the levels of malondialdehyde (MDA), superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), Cu, and Zn. Exposure to either of the anaesthetics significantly increased lung MDA levels compared to control (Mann-Whitney U test; P<0.05), probably because it is the tissue directly exposed to anaesthetic gases. Oxidative stress and antioxidant activity in other tissues varied between the desflurane and sevoflurane groups. Our results suggest that anaesthesiologist should not only be aware of the oxidative or antioxidative potential of anaesthetics they use, but should also base their choices on organs which are the most affected by their oxidative actionkisikovih radikala tako i zbog smanjene aktivnosti obrambenih sustava koji se mogu oduprijeti njihovu djelovanju. Stoga su saznanja o antioksidativnom kapacitetu anestetika koji se primjenjuju prije nekoga kirurškog zahvata vrlo važna i od velikog su kliničkog značenja. Sevofl uran i desfl uran su inhalacijski anestetici koji se učestalo rabe u svrhu uvođenja bolesnika u anesteziju. Cilj ovog istraživanja bio je utvrditi razine oksidativnog stresa u različitim tkivima štakora i usporediti razlike u odgovoru tkiva na izlaganje navedenim anesteticima. U tu svrhu razine oksidativnog stresa izmjerili smo u jetri, mozgu, bubrezima i plućima štakora podijeljenih u tri eksperimentalne skupine. Kontrolna skupina udisala je samo zrak, dok su druge dvije skupine izložene 8 %-tnomu sevofl uranu te 4 %-tnomu desfl uranu tijekom 4 h. Nakon završetka obrade životinje su žrtvovane i uzimani su im uzorci tkiva za biokemijske analize. Mjerena je razina malondialdehida (MDA), aktivnst enzima superoksid dismutaze (SOD) i glutation peroksidaze (GSH-Px) te razine bakra i cinka. Izloženost anesteticima izazvala je oksidativni stres u plućima, na što upućuje značajno povišena razina MDA (Mann-Whitney U-test P<0.05) izmjerena u plućnom tkivu štakora obiju izloženih skupina u odnosu na kontrolu. Plućno je tkivo u odnosu na ostala tkiva podložnije štetnim utjecajima reaktivnih kisikovih radikala vjerojatno stoga što je ono prvo izloženo plinovitim anesteticima nakon njihova ulaska u organizam. Razine oksidativnog stresa i antioksidativne aktivnosti koje smo izmjerili u ostalim tkivima bile su različite te su ovisile o primijenjenom anestetiku. Na osnovi dobivenih rezultata možemo zaključiti da bi se zbog različitog odgovora tkiva izbor anestetika trebao provoditi na individualnoj osnovi
    corecore