1,143 research outputs found
Hong-Ou-Mandel interferometer with cavities: theory
We study the number of coincidences in a Hong-Ou-Mandel interferometer exit
whose arms have been supplemented with the addition of one or two optical
cavities. The fourth-order correlation function at the beam-splitter exit is
calculated. In the regime where the cavity length are larger than the
one-photon coherence length, photon coalescence and anti-coalescence
interference is observed. Feynman's path diagrams for the indistinguishable
processes that lead to quantum interference are presented. As application for
the Hong-Ou-Mandel interferometer with two cavities, it is discussed the
construction of an optical XOR gate
Optical analog of Rabi oscillation suppression due to atomic motion
The Rabi oscillations of a two-level atom illuminated by a laser on resonance
with the atomic transition may be suppressed by the atomic motion through
averaging or filtering mechanisms. The optical analogs of these velocity
effects are described. The two atomic levels correspond in the optical analogy
to orthogonal polarizations of light and the Rabi oscillations to polarization
oscillations in a medium which is optically active, naturally or due to a
magnetic field. In the later case, the two orthogonal polarizations could be
selected by choosing the orientation of the magnetic field, and one of them be
filtered out. It is argued that the time-dependent optical polarization
oscillations or their suppression are observable with current technology.Comment: 10 pages, 10 figure
Oestrogen receptor positive breast cancer metastasis to bone: inhibition by targeting the bone microenvironment in vivo
Clinical trials have shown that adjuvant Zoledronic acid (ZOL) reduces the development of bone metastases irrespective of ER status. However, post-menopausal patients show anti-tumour benefit with ZOL whereas pre-menopausal patients do not. Here we have developed in vivo models of spontaneous ER+ve breast cancer metastasis to bone and investigated the effects of ZOL and oestrogen on tumour cell dissemination and growth. ER+ve (MCF7, T47D) or ERâve (MDA-MB-231) cells were administered by inter-mammary or inter-cardiac injection into female nude mice ± estradiol. Mice were administered saline or 100 ÎŒg/kg ZOL weekly. Tumour growth, dissemination of tumour cells in blood, bone and bone turnover were monitored by luciferase imaging, histology, flow cytometry, two-photon microscopy, micro-CT and TRAP/P1NP ELISA. Estradiol induced metastasis of ER+ve cells to bone in 80â100 % of animals whereas bone metastases from ERâve cells were unaffected. Administration of ZOL had no effect on tumour growth in the fat pad but significantly inhibited dissemination of ER+ve tumour cells to bone and frequency of bone metastasis. Estradiol and ZOL increased bone volume via different mechanisms: Estradiol increased activity of bone forming osteoblasts whereas administration of ZOL to estradiol supplemented mice decreased osteoclast activity and returned osteoblast activity to levels comparable to that of saline treated mice. ERâve cells require increased osteoclast activity to grow in bone whereas ER+ve cells do not. Zol does not affect ER+ve tumour growth in soft tissue, however, inhibition of bone turnover by ZOL reduced dissemination and growth of ER+ve breast cancer cells in bone
Inertial forces and the foundations of optical geometry
Assuming a general timelike congruence of worldlines as a reference frame, we
derive a covariant general formalism of inertial forces in General Relativity.
Inspired by the works of Abramowicz et. al. (see e.g. Abramowicz and Lasota,
Class. Quantum Grav. 14 (1997) A23), we also study conformal rescalings of
spacetime and investigate how these affect the inertial force formalism. While
many ways of describing spatial curvature of a trajectory has been discussed in
papers prior to this, one particular prescription (which differs from the
standard projected curvature when the reference is shearing) appears novel. For
the particular case of a hypersurface-forming congruence, using a suitable
rescaling of spacetime, we show that a geodesic photon is always following a
line that is spatially straight with respect to the new curvature measure. This
fact is intimately connected to Fermat's principle, and allows for a certain
generalization of the optical geometry as will be further pursued in a
companion paper (Jonsson and Westman, Class. Quantum Grav. 23 (2006) 61). For
the particular case when the shear-tensor vanishes, we present the inertial
force equation in three-dimensional form (using the bold face vector notation),
and note how similar it is to its Newtonian counterpart. From the spatial
curvature measures that we introduce, we derive corresponding covariant
differentiations of a vector defined along a spacetime trajectory. This allows
us to connect the formalism of this paper to that of Jantzen et. al. (see e.g.
Bini et. al., Int. J. Mod. Phys. D 6 (1997) 143).Comment: 42 pages, 7 figure
Computation in Classical Mechanics
There is a growing consensus that physics majors need to learn computational
skills, but many departments are still devoid of computation in their physics
curriculum. Some departments may lack the resources or commitment to create a
dedicated course or program in computational physics. One way around this
difficulty is to include computation in a standard upper-level physics course.
An intermediate classical mechanics course is particularly well suited for
including computation. We discuss the ways we have used computation in our
classical mechanics courses, focusing on how computational work can improve
students' understanding of physics as well as their computational skills. We
present examples of computational problems that serve these two purposes. In
addition, we provide information about resources for instructors who would like
to include computation in their courses.Comment: 6 pages, 3 figures, submitted to American Journal of Physic
Atom laser dynamics in a tight-waveguide
We study the transient dynamics that arise during the formation of an atom
laser beam in a tight waveguide. During the time evolution the density profile
develops a series of wiggles which are related to the diffraction in time
phenomenon. The apodization of matter waves, which relies on the use of smooth
aperture functions, allows to suppress such oscillations in a time interval,
after which there is a revival of the diffraction in time. The revival time
scale is directly related to the inverse of the harmonic trap frequency for the
atom reservoir.Comment: 6 pages, 5 figures, to be published in the Proceedings of the 395th
WE-Heraeus Seminar on "Time Dependent Phenomena in Quantum Mechanics ",
organized by T. Kramer and M. Kleber (Blaubeuren, Germany, September 2007
Singularity-driven Second and Third Harmonic Generation in a {\epsilon}-near-zero nanolayer
We show a new path to {\epsilon}~0 materials without resorting to metal-based
metamaterial composites. A medium that can be modeled using Lorentz oscillators
usually displays {\epsilon}=0 crossing points, e.g. {\epsilon}=0 at
{\lambda}~7{\mu}m and 20{\mu}m for SiO2 and CaF2, respectively. We show that a
Lorentz medium yields a singularity-driven enhancement of the electric field
followed by dramatic lowering of thresholds for a plethora of nonlinear optical
phenomena. We illustrate the remarkable enhancement of second and third
harmonic generation in a layer of {\epsilon}~0 material 20nm thick, and discuss
the role of nonlinear surface sources
Recruitment in Qualitative Public Health Research: Lessons Learned During Dissertation Sample Recruitment
The purpose of this article is to describe the recruitment challenges faced by eight public health graduate students when conducting qualitative dissertation research. The authors summarize their dissertation studies, describe recruitment challenges, and provide strategies and recommendations used to address challenges. The authors identified twelve recruitment issues which they grouped into three major categories: (a) obtaining consent; (b) working with gatekeepers; and (c) accessing participants. The authors propose three recommendations to consider in participant recruitment, which are: (a) collaborate with gatekeepers; (b) use additional recruitment tools; and (c) understand your target population. The compilation of experiences from multiple graduate students from a diverse selection of topics provides valuable insight and resources when planning a qualitative research study in the field of public health
Frame dragging with optical vortices
General Relativistic calculations in the linear regime have been made for
electromagnetic beams of radiation known as optical vortices. These exotic
beams of light carry a physical quantity known as optical orbital angular
momentum (OAM). It is found that when a massive spinning neutral particle is
placed along the optical axis, a phenomenon known as inertial frame dragging
occurs. Our results are compared with those found previously for a ring laser
and an order of magnitude estimate of the laser intensity needed for a
precession frequency of 1 Hz is given for these "steady" beams of light.Comment: 13 pages, 2 figure
- âŠ