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General Relativistic calculations in the linear regime have been made for electromagnetic beams 

of radiation known as optical vortices. These exotic beams of light carry a physical quantity 

known as optical orbital angular momentum (OAM). It is found that when a massive spinning 

neutral particle is placed along the optical axis a phenomenon known as inertial frame dragging 

occurs. Our results are compared with those found previously for a ring laser and an order of 

magnitude estimate of the laser intensity needed for a precession frequency of 1 Hz is given for 

these “steady” beams of light. 

          PACS numbers: 04.20.-q, 42.55.Wd, 42.60-v 

In pre-relativity, Newton’s law of universal gravitation was used to quantify the gravitational 

force between massive point objects. From this elementary theory of gravity, it is well known 

that mass is the source of gravitational fields, and those gravitational fields act only upon 

massive particles [1,2]. In contrast, in 1804 the German physicist Soldner used Newton’s 

corpuscular (little particle) theory of light to show that starlight skimming the sun could be 

deflected about a straight path. This result is often referred to as the “Newtonian prediction” 

[2,3]. It was not until the birth of General Relativity (GR) that Einstein theoretically 

demonstrated that the trajectories of photons could be influenced by a gravitational field and in 

the case of the deflection of starlight by the sun he gave the correct result which is twice the 

Newtonian prediction [4]. In May of 1919, this deflection was observed by Eddington during a 
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total eclipse [5]. More recently, the deflection of light around massive objects has been exploited 

to detect and investigate astronomical phenomenon by a GR effect known as gravitational 

lensing [6].  

Even more fascinating, in GR the geometry of spacetime depends on the energy-

momentum configure of a source, and since light carries energy and momentum, light also acts 

as a source of gravity. In 1931, Tolman showed that “thin pencils of light” produce a 

gravitational influence on test rays and particles [7]. Scully later extended upon the earlier work 

of Tolman et. al., by calculating the gravitational coupling between subluminal laser pulses [8]. 

More recently, Mallett generalized upon these earlier works by solving Einstein’s equations in 

the weak-field limit for a ring laser configuration [9]. These calculations demonstrated a 

phenomenon known as inertial frame dragging. Of further interest, in a later controversial 

publication, Mallet found exact solutions of the Einstein field equations and showed that the 

exterior metric contained closed timelike curves (CTCs) [10,11]. These light-induced CTCs are 

conjectured by Mallett to be the foundation for a time machine. In this letter, we extend upon the 

work of Mallett by calculating the weak gravitational influence from a Laguerre-Gaussian ( LG
 ) 

laser beam on a massive spinning neutral particle. These exotic beams of light known as optical 

vortices (OVs) have generated considerable interest in the scientific community because they 

carry a physical quantity known as optical orbital angular momentum (OAM) [12]. It is the goal 

of this paper to calculate the coupling of this unique form of radiation with a spinning test 

particle and to compare the results with those found in the case of a ring laser.   

Under the Lorentz gauge condition  A  0  and for source-free vacuum 

electromagnetic radiation, the four-potential satisfies the homogeneous wave equation



  A  0. The amplitude of paraxial beams are solutions of the scalar paraxial wave equation 

(PWE), which is ultimately derived from the wave equation. To find the electromagnetic fields 

of paraxial beams, the scalar and vector potentials are chosen as At  A0  and 



A  A0  êx   êy   

respectively [13]. Here   and   are polarization parameters such that

1  , 0    0,  =1  correspond to polarization along the -directionx  -directiony , and 

  is a solution to the PWE. Using Maxwell’s equations and the Lorentz gauge condition, the 

electric and magnetic fields within the paraxial approximation are, 
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Three families of solutions   have been found by separation of variable. In Cartesian 

coordinates the solutions are the Hermite-Gaussian modes, and in cylindrical polar and elliptical 

coordinates they are the Laguerre- and Ince-Gaussian modes respectively. For the present work, 

the radiation field of the LG
  beams will be of interest as the source of the gravitational 

influence,  
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Here 2 2
0 0( ) 1 /w z w z z   is the beam size, where 0w  and 2

0 0 / 2z kw  are the waist and 

Rayleigh range respectively. 2
0( ) /R z z z z   is the radius of curvature, 0( ) arctan( / )G z z z   is 

the Gouy phase and pL  are the associated Laguerre polynomials.  



Using Eqs. (1) and (2) and a change of basis, it is straightforward to calculate the 

Poynting vector 


S 


E 


B  / 0  for the LG

  beams in cylindrical polar coordinates [12], 
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Here the photon helicity parameter is  z  i    , where  1 is for right and left 

circularly polarized light and  z  0 is for linearly polarized light. In addition to the longitudinal 

component of energy flow normally encountered with planewaves, paraxial beams in general 

have radial and azimuthal components. Integral curves of the Poynting vector “spiral” around the 

optical axis of the beam—suggesting that these curves are the paths traveled by the photons. The 

radial component is inversely proportional to ( )R z , which is an inescapable consequence of the 

diffraction of finite-sized beams. For OVs, the azimuthal component is dependent upon the 

angular momentum mode number   in addition to the helicity parameter  z . In general, the 

azimuthal component in Eq. (3) is small compared to the longitudinal component; however, we 

will demonstrate that the magnitude presents no difficulties relative to results found in Ref [9], 

where the longitudinal components were the sole contributor to the Poynting vectors. 

For weak gravitational fields, the full nonlinear Einstein equations can be linearized as 

 
 h   T T / 2  , where T    FF

 FF / 4  / 0  is the energy-

momentum tensor and F   A   A  is electromagnetic tensor. It will be seen that the trace 

of the energy-momentum tensor is zero T  T  0, thereby reducing the linearized field 

equation to  
 h  T  [8,9]. As a note, in the linear approximation, Einstein’s equations 

are analogous to potential problems typically encountered in graduate textbooks on 



electrodynamics [13,14]. The solutions for the metric perturbation in the linearized version of the 

Einstein field equations can be approximated as [7—9], 

  3( ) ( , ) ,h x d x G x x T x t x x         . (4) 

Here 48 /G c   where the gravitational constant is 11 3 26.67 10  m /kg/sG   , 

 ( , ) 1/ 4G x x x x    is the Green’s function and T  is the energy-momentum tensor. Using 

the results from Eqs. (1) and (3) and noticing that x yE cB  and y xE cB  , the energy-

momentum tensor for LG p
  beams with angular and radial “quantum” numbers   and   0 is 

found in the paraxial approximation to be,  
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The energy-momentum tensor in Eq. (5) is symmetric, and conveniently within the paraxial 

approximation, its elements can be written in terms of the Cartesian components of the Poynting 

vector in Eq. (3).  

To test for the effects of inertial frame dragging, a spinning test particle will be placed 

along the optical axis of the beam [Fig. 1]. With this in mind, it is computationally advantageous 

to inspect the form of the General Relativistic spin equations before evaluating the integrals in 

Eq. (4). The General Relativistic spin equations in the slow motion and weak field approximates 

are given by [9,15] 
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where 
  are the Christoffel connection coefficients, and is  (not to be confused with the 

Poynting vector, which uses upper case lettering) and iv  are the spin and velocity vectors. For a 

stationary particle, Eq. (6) reduces to 0/ k
i i kds dt c s   and the required Christoffel symbols are 

given by  0 ,0 0, 0,2 k kj
i ji j i i jh h h    . In calculating the energy-momentum tensor given in Eq. 

(5), a continuous-wave field was time averaged, and because the integral in Eq. (4) will be 

calculated for a “steady” beam of light between / 2z L   and / 2z L , the connection 

coefficients take the simplified form  0 0, 0,2 k kj
i j i i jh h   . Using these conditions, the spatial 

components of Eq. (6) can be written as,  
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The Green’s function in cylindrical polar coordinates can be cumbersome to work with 

during integration; however, since we are interested in the interior points very near to the optical 

axis, the Green’s function can be expanded using a Taylor-Maclaurin series expansion about the 

optical axis where the test particle will be placed,  
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Here 2 2
0 (0,0, ) ( )R R z r z z      and ( )nP x  are the Legendre polynomials. The primed 

quantities are those of the source of radiation and the unprimed quantities are for the observation 

points. Equation (8) simplifies calculation by allowing for the trigonometric function to be made 

separable from the radial r  and longitudinal z
 
coordinates.   

Even with the simplifications resulting from the use of a steady beam and the expansion 

of the Green’s function in terms of the Legendre polynomials, the integral in Eq. (4) is 

challenging. Up to this point, we are still within the framework of the paraxial and General 

Relativistic approximations. Our first approximation is to take the doughnut-shaped intensity 

profile of the Laguerre-Gaussian beams as a thin cylindrical shell of radius 0r  and length L  [see 

Fig. 2],  
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Here 2
0A r  is taken to be the transverse area of the beam, 0( )r r   is the Dirac delta function, 

and L  is a top-hat function of length L and centered on 0z  [14]. The radial position 0r of the 

peak in the intensity profile 
2 , which is determined by the condition 

2
/ 0r   , is at 

0 ( ) / 2r w z  . Because the integral in Eq. (4) is performed with the Dirac delta function of 

Eq. (9), we can simplify the derivative term appearing in Eq. (3); this derivative is 

 2 22/ 2 / 2 /r r r w      and upon substituting 0 ( ) / 2r w z   for r  into this 

expression we find 
2

/ 0r   . Lastly, we neglect the effects of diffraction by setting 

-dependentz beam parameters to their value at 0z  , viz., 0(0)w w  and (0)R   for the 



entire track of the beam. The coefficients in Eq. (7) can then be found by performing the 

integrals in Eq. (4) with Eqs. (8) and (9), taking the appropriate derivatives in Eq (7), and 

evaluating the results at the origin, 
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Here L is the linear radiation density and is related to the volume density by 2
0L V r   .   

Using combinations of the quantities found in Eq. (10), the time rate of change of the spin 

vector with respect to time is found to satisfy the cross product d dt  S / S , where 

 OV0,0, z 
 
is the precession frequency. The spinning test particle placed at the center of the 

OV will have a rate of precession given by OV 3 2
0( ) /z LG f L c r     , where 

2 2
0( ) / 4f L L r L  . Our first observation is that the precession frequency in Eq. (11) is 

“quantized” with the angular momentum mode number of the OV and depends on its sign. 

Second, for an infinitely long beam track L   the precession frequency OV
z

 
is finite. This is 

expected since the strength of the “influence” decreases from a finite source. For example, in Ref 

[9], we find that the strength of the influence on a particle placed at a position z  is 

 3 2 2 2 22 / 2 4 4a a z a z    , which falls off as 31/ z . For OVs, the strength of the influence is 

2 2
0/ 4f L r L  . Letting the beam track be equal to twice the Rayleigh range (diffraction 

length) 02L z  and allowing the transverse beam size to be equal to  , the strength reaches 



~ 95%  of its maximum value. This justifies neglecting diffraction and allows us to simplify the 

expression for the rate of precession as OV 1 2 3
0/z LG r c     .  

The rate of precession in the case of the ring laser was found to be ring 38 2 /z LG ac  , 

where a  is the length of each side of the ring laser. From the previous discussion on OV’s, it 

was shown that the influence is a collective effect from the beam track, while the influence for 

the ring laser is from the pointing vector being in the plane of the laser. Both configurations 

benefit from decreasing the radius of their rings. However, optical vortices can be tightly focused 

to roughly a wavelength so that OV 1 3/z LG c     . Ultimately, The ring laser dimensions are 

limited by the damage threshold ( 12 2~ 10  W/cm ) of the optical material used in its construction: 

making the ring laser smaller requires making the beam smaller, which results in a greater peak 

laser intensity.  

In conclusion, General Relativistic calculations in the weak-field limit have shown that 

optical vortices can exhibit frame dragging on a spinning test particle. As a result of the 

azimuthal component of the Poynting vector, OVs do not require optical constraints to circulate 

the radiation. Most importantly their ring size is limited only by the wavelength of light. To get a 

feel for the magnitude of the frame-dragging effect, an estimate of the peak laser intensity 

needed for a 1 Hz precession frequency is made for these “steady configurations”. By focusing 

an 800 nm, single cycle pulse down to a wavelength, the required intensity is 28 2~10  W/cm , 

which is close to the Schwinger intensity of 29 210  W/cmSI   needed for electron-positron pair 

production [16]. Currently, the world’s most intense laser pulses are produced by the Hercules 

laser system at the University of Michigan, which deliverers 30 fs laser pulses to a focal spot-

size of about a micron to yield an intensity of 22 2~ 2 10  W/cm [17].   
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Figure Captions 

   

Fig. 1. (color online). Artistic rendition of a massive spinning neutral particle placed at the center 

of an optical vortex beam. The multicolored “spiral staircase” surface is the phasefront of an 

optical vortex beam. The intensity profile of the doughnut-shaped beam is encoded in the 

transparency of this surface. The blue sphere at the center of the image is a spinning test particle. 

Its spin vector is shown by the red arrow. The Pointing vector (not shown) follows integral 

curves which spiral in an opposite sense to that in which the phasefront appears to spiral. In this 

image the spin precession is in a clockwise sense when viewed from above.   

 

Fig.  2. (color online) A thin cylindrical shell representation of a “steady” Laguerre-Gaussian 

beam of length L  and radius 0r  centered on the origin. The transverse beam profile is 

approximated using a Dirac delta function and the length of the cylinder is approximated using a 

top-hat function. The optical axis of the beam is along the -directionz , and the transverse 

dimensions of the beam are in the -  planex y . The x


 vector labels the coordinates of the source 

of radiation on the cylinder. The vector x


 gives the coordinates of the observation points and the 

vector R


 is the displacement vector between the source and observation points. 
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Figure 2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


