752 research outputs found

    Spin-orbital Kondo decoherence by environmental effects in capacitively coupled quantum dot devices

    Full text link
    Strong correlation effects in a capacitively coupled double quantum-dot setup were previously shown to provide the possibility of both entangling spin-charge degrees of freedom and realizing efficient spin-filtering operations by static gate-voltage manipulations. Motivated by the use of such a device for quantum computing, we study the influence of electromagnetic noise on a general spin-orbital Kondo model, and investigate the conditions for observing coherent, unitary transport, crucial to warrant efficient spin manipulations. We find a rich phase diagram, where low-energy properties sensitively depend on the impedance of the external environment and geometric parameters of the system. Relevant energy scales related to the Kondo temperature are also computed in a renormalization-group treatment, allowing to assess the robustness of the device against environmental effects.Comment: 13 pages, 13 figures. Minor modifications in V

    The mRNA-bound proteome of the human malaria parasite Plasmodium falciparum.

    Get PDF
    BackgroundGene expression is controlled at multiple levels, including transcription, stability, translation, and degradation. Over the years, it has become apparent that Plasmodium falciparum exerts limited transcriptional control of gene expression, while at least part of Plasmodium's genome is controlled by post-transcriptional mechanisms. To generate insights into the mechanisms that regulate gene expression at the post-transcriptional level, we undertook complementary computational, comparative genomics, and experimental approaches to identify and characterize mRNA-binding proteins (mRBPs) in P. falciparum.ResultsClose to 1000 RNA-binding proteins are identified by hidden Markov model searches, of which mRBPs encompass a relatively large proportion of the parasite proteome as compared to other eukaryotes. Several abundant mRNA-binding domains are enriched in apicomplexan parasites, while strong depletion of mRNA-binding domains involved in RNA degradation is observed. Next, we experimentally capture 199 proteins that interact with mRNA during the blood stages, 64 of which with high confidence. These captured mRBPs show a significant overlap with the in silico identified candidate RBPs (p < 0.0001). Among the experimentally validated mRBPs are many known translational regulators active in other stages of the parasite's life cycle, such as DOZI, CITH, PfCELF2, Musashi, and PfAlba1-4. Finally, we also detect several proteins with an RNA-binding domain abundant in Apicomplexans (RAP domain) that is almost exclusively found in apicomplexan parasites.ConclusionsCollectively, our results provide the most complete comparative genomics and experimental analysis of mRBPs in P. falciparum. A better understanding of these regulatory proteins will not only give insight into the intricate parasite life cycle but may also provide targets for novel therapeutic strategies

    On the slice genus of links

    Full text link
    We define Casson-Gordon sigma-invariants for links and give a lower bound of the slice genus of a link in terms of these invariants. We study as an example a family of two component links of genus h and show that their slice genus is h, whereas the Murasugi-Tristram inequality does not obstruct this link from bounding an annulus in the 4-ball.Comment: Published by Algebraic and Geometric Topology at http://www.maths.warwick.ac.uk/agt/AGTVol3/agt-3-30.abs.htm

    Gate-tuned high frequency response of carbon nanotube Josephson junctions

    Get PDF
    Carbon nanotube (CNT) Josephson junctions in the open quantum dot limit exhibit superconducting switching currents which can be controlled with a gate electrode. Shapiro voltage steps can be observed under radiofrequency current excitations, with a damping of the phase dynamics that strongly depends on the gate voltage. These measurements are described by a standard RCSJ model showing that the switching currents from the superconducting to the normal state are close to the critical current of the junction. The effective dynamical capacitance of the nanotube junction is found to be strongly gate-dependent, suggesting a diffusive contact of the nanotube.Comment: 14 pages, 8 figure

    Mean-field phase diagram of interacting e_g electrons

    Full text link
    We investigate the magnetic phase diagram of the two-dimensional model for e_g electrons which describes layered nickelates. One finds a generic tendency towards magnetic order accompanied by orbital polarization. For two equivalent orbitals with diagonal hopping such orbitally polarized phases are induced by finite crystal field.Comment: 2 pages, 2 figure

    Nonlocal correlations of the local density of states in disordered quantum Hall systems

    Full text link
    Motivated by recent high-resolution scanning tunneling microscopy (STM) experiments in the quantum Hall regime both on massive two-dimensional electron gas and on graphene, we consider theoretically the disorder averaged nonlocal correlations of the local density of states (LDoS) for electrons moving in a smooth disordered potential in the presence of a high magnetic field. The intersection of two quantum cyclotron rings around the two different positions of the STM tip, correlated by the local disorder, provides peaks in the spatial dispersion of the LDoS-LDoS correlations when the intertip distance matches the sum of the two quantum Larmor radii. The energy dependence displays also complex behavior: for the local LDoS-LDoS average (i.e., at coinciding tip positions), sharp positive correlations are obtained for tip voltages near Landau level, and weak anticorrelations otherwise.Comment: 11 pages, 8 figures ; v2: 2 references added and small extension of conclusion, similar to published versio

    Universal transport signatures in two-electron molecular quantum dots: gate-tunable Hund's rule, underscreened Kondo effect and quantum phase transitions

    Full text link
    We review here some universal aspects of the physics of two-electron molecular transistors in the absence of strong spin-orbit effects. Several recent quantum dots experiments have shown that an electrostatic backgate could be used to control the energy dispersion of magnetic levels. We discuss how the generically asymmetric coupling of the metallic contacts to two different molecular orbitals can indeed lead to a gate-tunable Hund's rule in the presence of singlet and triplet states in the quantum dot. For gate voltages such that the singlet constitutes the (non-magnetic) ground state, one generally observes a suppression of low voltage transport, which can yet be restored in the form of enhanced cotunneling features at finite bias. More interestingly, when the gate voltage is controlled to obtain the triplet configuration, spin S=1 Kondo anomalies appear at zero-bias, with non-Fermi liquid features related to the underscreening of a spin larger than 1/2. Finally, the small bare singlet-triplet splitting in our device allows to fine-tune with the gate between these two magnetic configurations, leading to an unscreening quantum phase transition. This transition occurs between the non-magnetic singlet phase, where a two-stage Kondo effect occurs, and the triplet phase, where the partially compensated (underscreened) moment is akin to a magnetically "ordered" state. These observations are put theoretically into a consistent global picture by using new Numerical Renormalization Group simulations, taylored to capture sharp finie-voltage cotunneling features within the Coulomb diamonds, together with complementary out-of-equilibrium diagrammatic calculations on the two-orbital Anderson model. This work should shed further light on the complicated puzzle still raised by multi-orbital extensions of the classic Kondo problem.Comment: Review article. 16 pages, 17 figures. Minor corrections and extra references added in V

    Classical percolation fingerprints in the high-temperature regime of the integer quantum Hall effect

    Full text link
    We have performed magnetotransport experiments in the high-temperature regime (up to 50 K) of the integer quantum Hall effect for two-dimensional electron gases in semiconducting heterostructures. While the magnetic field dependence of the classical Hall law presents no anomaly at high temperatures, we find a breakdown of the Drude-Lorentz law for the longitudinal conductance beyond a crossover magnetic field B_c ~ 1 T, which turns out to be correlated with the onset of the integer quantum Hall effect at low temperatures. We show that the high magnetic field regime at B > B_c can be understood in terms of classical percolative transport in a smooth disordered potential. From the temperature dependence of the peak longitudinal conductance, we extract scaling exponents which are in good agreement with the theoretically expected values. We also prove that inelastic scattering on phonons is responsible for dissipation in a wide temperature range going from 1 to 50 K at high magnetic fields.Comment: 14 pages + 8 Figure

    Influence of spin fluctuations near the Mott transition: a DMFT study

    Full text link
    Dynamics of magnetic moments near the Mott metal-insulator transition is investigated by a combined slave-rotor and Dynamical Mean-Field Theory solution of the Hubbard model with additional fully-frustrated random Heisenberg couplings. In the paramagnetic Mott state, the spinon decomposition allows to generate a Sachdev-Ye spin liquid in place of the collection of independent local moments that typically occurs in the absence of magnetic correlations. Cooling down into the spin-liquid phase, the onset of deviations from pure Curie behavior in the spin susceptibility is found to be correlated to the temperature scale at which the Mott transition lines experience a marked bending. We also demonstrate a weakening of the effective exchange energy upon approaching the Mott boundary from the Heisenberg limit, due to quantum fluctuations associated to zero and doubly occupied sites.Comment: 6 pages, 3 figures. V3 was largely expande

    Magnetotransport in the Kondo model with ferromagnetic exchange interaction

    Full text link
    We consider the transport properties in an applied magnetic field of the spin S=1/2 Kondo model with ferromagnetic exchange coupling to electronic reservoirs, a description relevant for the strong coupling limit of underscreened spin S=1 Kondo impurities. Because the ferromagnetic Kondo interaction is marginally irrelevant, perturbative methods should prove accurate down to low energies. For the purpose of this study, we use a combination of Majorana diagrammatic theory with Density Matrix Numerical Renormalization Group simulations. In the standard case of antiferromagnetic Kondo exchange, we first show that our technique recovers previously obtained results for the T-matrix and spin relaxation at weak coupling (above the Kondo temperature). Considering then the ferromagnetic case, we demonstrate how the low-energy Kondo anomaly splits for arbitrary small values of the Zeeman energy, in contrast to fully screened Kondo impurities near the strong coupling Fermi liquid fixed point, and in agreement with recent experimental findings for spin S=1 molecular quantum dots.Comment: 14 pages, 13 figures, minor changes in V
    • …
    corecore