38 research outputs found

    Antibody Responses against Enterovirus Proteases are Potential Markers for an Acute Infection

    Get PDF
    Background: Enteroviruses are a group of common non-enveloped RNA viruses that cause symptoms ranging from mild respiratory infections to paralysis. Due to the abundance of enterovirus infections it is hard to distinguish between on-going and previous infections using immunological assays unless the IgM fraction is studied. Methods: In this study we show using Indirect ELISA and capture IgM ELISA that an IgG antibody response against the nonstructural enteroviral proteins 2A and 3C can be used to distinguish between IgM positive (n = 22) and IgM negative (n = 20) human patients with 83% accuracy and a diagnostic odds ratio of 30. Using a mouse model, we establish that the antibody response to the proteases is short-lived compared to the antibody response to the structural proteins in. As such, the protease antibody response serves as a potential marker for an acute infection. Conclusions: Antibody responses against enterovirus proteases are shorter-lived than against structural proteins and can differentiate between IgM positive and negative patients, and therefore they are a potential marker for acute infections

    Treatment With Recombinant Tumor Necrosis Factor–Related Apoptosis-Inducing Ligand Alleviates the Severity of Streptozotocin-Induced Diabetes

    Get PDF
    OBJECTIVE: To evaluate the potential therapeutic effect of recombinant human tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) treatment in a model of type 1 diabetes. RESEARCH DESIGN AND METHODS: Recombinant TRAIL was added in vitro to primary human and mouse peripheral blood mononuclear cells (PBMCs) and isolated human islets to evaluate the expression of the immunoregulatory gene SOCS1. Diabetes was induced by five consecutive daily injections of low-concentration (50 mg/kg) streptozotocin (STZ) in C57 black mice (n = 24). A group of these mice (n = 12) was co-injected with recombinant TRAIL (20 microg/day) for 5 days, and the diabetic status (glycemia and body weight) was followed over time. After 6 weeks, circulating levels of insulin, TNF-alpha, and osteoprotegerin (OPG) were measured, and animals were killed to perform the histological analysis of the pancreas. RESULTS: The in vitro exposure of both PBMCs and human islets to recombinant TRAIL significantly upregulated the expression of SOCS1. With respect to STZ-treated animals, mice co-injected with STZ+TRAIL were characterized by 1) lower levels of hyperglycemia, 2) higher levels of body weight and insulinemia, 3) a partial preservation of pancreatic islets with normal morphology, and 4) a lower expression of both systemic (TNF-alpha and OPG) and pancreatic (vascular cell adhesion molecule [VCAM]-1) inflammatory markers. CONCLUSIONS: Overall, these data demonstrate that the administration of recombinant TRAIL ameliorates the severity of STZ-induced type 1 diabetes, and this effect was accompanied by the upregulation of SOCS1 expressio

    IL-27 Imparts Immunoregulatory Function to Human NK Cell Subsets

    Get PDF
    Interleukin-27 (IL-27) is a cytokine with multiple roles in regulating the immune response, but its effect on human CD56bright and CD56dim NK cell subsets is unknown. NK cell subsets interact with other components of the immune system, leading to cytotoxicity or immunoregulation depending on stimulating factors. We found that IL-27 treatment results in increased IL-10 and IFN-γ expression, increased viability and decreased proliferation in both CD56bright and CD56dim NK cell subsets. More importantly, IL-27 treatment imparts regulatory activity to CD56bright NK cells, which mediates its suppressive function on T cells in a contact-dependent manner. There is growing evidence that CD56bright NK cell-mediated immunoregulation plays an important role in the control of autoimmunity. Thus, understanding the role of IL-27 in NK cell function has important implications for treatment of autoimmune disorders

    RNase L Mediated Protection from Virus Induced Demyelination

    Get PDF
    IFN-α/β plays a critical role in limiting viral spread, restricting viral tropism and protecting mice from neurotropic coronavirus infection. However, the IFN-α/β dependent mechanisms underlying innate anti-viral functions within the CNS are poorly understood. The role of RNase L in viral encephalomyelitis was explored based on its functions in inhibiting translation, inducing apoptosis, and propagating the IFN-α/β pathway through RNA degradation intermediates. Infection of RNase L deficient (RL−/−) mice with a sub-lethal, demyelinating mouse hepatitis virus variant revealed that the majority of mice succumbed to infection by day 12 p.i. However, RNase L deficiency did not affect overall control of infectious virus, or diminish IFN-α/β expression in the CNS. Furthermore, increased morbidity and mortality could not be attributed to altered proinflammatory signals or composition of cells infiltrating the CNS. The unique phenotype of infected RL−/− mice was rather manifested in earlier onset and increased severity of demyelination and axonal damage in brain stem and spinal cord without evidence for enhanced neuronal infection. Increased tissue damage coincided with sustained brain stem infection, foci of microglia infection in grey matter, and increased apoptotic cells. These data demonstrate a novel protective role for RNase L in viral induced CNS encephalomyelitis, which is not reflected in overall viral control or propagation of IFN-α/β mediated signals. Protective function is rather associated with cell type specific and regional restriction of viral replication in grey matter and ameliorated neurodegeneration and demyelination
    corecore