576 research outputs found

    3-4.5 ÎŒm continuously tunable single mode VECSEL

    Get PDF
    We present continuously tunable Vertical External Cavity Surface Emitting Lasers (VECSEL) in the mid-infrared. The structure based on IV-VI semiconductors is epitaxially grown on a Si-substrates. The VECSEL emit one single mode, which is mode hop-free tunable over 50-100nm around the center wavelength. In this work, two different devices are presented, emitting at 3.4ÎŒm and 3.9ÎŒm, respectively. The lasers operate near room temperature with thermoelectric stabilization. They are optically pumped, yielding an output power >10mWp. The axial symmetric emission beam has a half divergence angle of <3.3

    5-ÎŒm vertical external-cavity surface-emitting laser (VECSEL) forspectroscopic applications

    Get PDF
    Mid-IR tunable VECSELs (Vertical External-Cavity Surface-Emitting Lasers) emitting at 4-7 ÎŒm wavelengths and suitable for spectroscopic sensing applications are described. They are realized with lead-chalcogenide (IV-VI) narrow band gap materials. The active part, a single 0.6-2-ÎŒm thick PbTe or PbSe gain layer, is grown onto an epitaxial Bragg mirror consisting of two or three Pb1−y EuyTe/BaF2 quarter-wavelength layer pairs. All layers are deposited by MBE in a single run employing a BaF2 or Si substrate, no further processing is needed. The cavity is completed with an external curved top mirror, which is again realized with an epitaxial Bragg structure. Pumping is performed optically with a 1.5-ÎŒm laser. Maximum output power for pulsed operation is currently up to >1 Wp at −173°C and >10 mW at 10°C. In continuous wave (CW) operation, 18 mW at 100 K are reached. Still higher operating temperatures and/or powers are expected with better heat-removal structures and better designs employing QW (Quantum-Wells). Advantages of mid-IR VECSELs compared to edge-emitting lasers are their very good beam quality (circular beam with 15 ÎŒm are accessible with Pb1−y XyZ (X=Sr, Eu, Sn, Z=Se, Te) and/or including Q

    Appendix to "Approximating perpetuities"

    Full text link
    An algorithm for perfect simulation from the unique solution of the distributional fixed point equation Y=dUY+U(1−U)Y=_d UY + U(1-U) is constructed, where YY and UU are independent and UU is uniformly distributed on [0,1][0,1]. This distribution comes up as a limit distribution in the probabilistic analysis of the Quickselect algorithm. Our simulation algorithm is based on coupling from the past with a multigamma coupler. It has four lines of code

    Phase Transition in the Aldous-Shields Model of Growing Trees

    Full text link
    We study analytically the late time statistics of the number of particles in a growing tree model introduced by Aldous and Shields. In this model, a cluster grows in continuous time on a binary Cayley tree, starting from the root, by absorbing new particles at the empty perimeter sites at a rate proportional to c^{-l} where c is a positive parameter and l is the distance of the perimeter site from the root. For c=1, this model corresponds to random binary search trees and for c=2 it corresponds to digital search trees in computer science. By introducing a backward Fokker-Planck approach, we calculate the mean and the variance of the number of particles at large times and show that the variance undergoes a `phase transition' at a critical value c=sqrt{2}. While for c>sqrt{2} the variance is proportional to the mean and the distribution is normal, for c<sqrt{2} the variance is anomalously large and the distribution is non-Gaussian due to the appearance of extreme fluctuations. The model is generalized to one where growth occurs on a tree with mm branches and, in this more general case, we show that the critical point occurs at c=sqrt{m}.Comment: Latex 17 pages, 6 figure

    Ryanodine Receptor Adaptation

    Get PDF
    In the heart, depolarization during the action potential activates voltage-dependent Ca2+ channels that mediate a small, localized Ca2+ influx (ICa). This small Ca2+ signal activates specialized Ca2+ release channels, the ryanodine receptors (RyRs), in the sarcoplasmic reticulum (SR). This process is called Ca2+-induced Ca2+ release (CICR). Intuitively, the CICR process should be self-regenerating because the Ca2+ released from the SR should feedback and activate further SR Ca2+ release. However, the CICR process is precisely controlled in the heart and, consequently, some sort of negative control mechanism(s) must exist to counter the inherent positive feedback of the CICR process. Defining the nature of this negative control has been a focus of investigation for decades. Several mechanisms have been suggested including all of the following: Ca2+-dependent inactivation, adaptation, stochastic attrition, “fateful” inactivation, SR Ca2+ depletion, and coupled RyR gating. These mechanisms are generally regarded as being mutually exclusive (i.e., alternative). An emerging and more sophisticated view is that the required negative control is probably provided by a synergy of mechanisms, not a single mechanism. In this perspective, we focus on the origin of Ca2+-dependent inactivation and adaptation of single cardiac RyR channels. Specific concerns about the adaptation phenomenon are addressed and a comprehensive unifying view of RyR Ca2+ regulation is forwarded. We conclude that the steady-state Ca2+ dependence, high Ca2+ inactivation and low Ca2+ adaptation are three distinct manifestations of the same underlying mechanism, Ca2+-dependent modal RyR channel gating

    Updating models for restoration and management of fiery ecosystems

    Get PDF
    © 2015 Elsevier B.V. Scientific models that guide restoration/management protocols should be reviewed periodically as new data become available. We examine ecological concepts used to guide restoration of pine savannas and woodlands, historically prominent but now rare habitats in the southern North American Coastal Plain. For many decades, pine savanna management has been guided predominantly by a biome-centric succession model. Pine savannas have been considered early-successional communities that, in the absence of fire, transition rapidly toward closed-canopy hardwood forests. Recurrent fires have been viewed as exogenous disturbances that maintain savanna ecosystems as a sub-climax, blocking succession to an equilibrium steady state (closed-canopy forests). Over recent decades, a vegetation-fire feedback model has emerged in which pine savannas are conceptualized as persistent, non-equilibrium communities maintained by endogenous, co-evolutionary vegetation-fire feedbacks. Endemic plant species are resistant to fires and specialized for post-fire conditions generated by frequent lightning fires, primarily within a distinct fire season. These species produce pyrogenic fine fuels that are easily ignited. The resulting fire regimes, entrained by these vegetation-fire feedbacks, are predicted to result in persistent pine savannas. Local variation over space and time in evolutionary feedback mechanisms between pyrogenic vegetation and fire regimes produces heterogeneous landscapes. Disturbances of these feedbacks, such as human fire suppression, are postulated to result in rapid transition to communities lacking feedback elements, such as closed-canopy forest and those without pyrogenic species. Succession-based management focuses on reversing the transition to forest, primarily by removing hardwoods and reintroducing fire as a disturbance. However, we advocate restoration and management approaches that target reinstitution of functional vegetation-fire feedbacks. Such approaches should favor native pyrogenic plant species and reinstitute fire regimes that mimic historical, evolutionarily derived fire regimes. Vegetation-fire feedback concepts should be useful in addressing resistance and resilience of fiery ecosystems worldwide to inherent changes in feedback mechanisms, constituting a framework useful in addressing global management challenges

    Broadly tunable mid-infrared VECSEL for multiple components hydrocarbon gas sensing

    Get PDF
    A new sensing platform to simultaneously identify and quantify volatile C1 to C4 alkanes in multi-component gas mixtures is presented. This setup is based on an optically pumped, broadly tunable mid-infrared vertical-external-cavity surface-emitting laser (VECSEL) developed for gas detection. The lead-chalcogenide VECSEL is the key component of the presented optical sensor. The potential of the proposed sensing setup is illustrated by experimental absorption spectra obtained from various mixtures of volatile hydrocarbons and water vapor. The sensor has a sub-ppm limit of detection for each targeted alkane in a hydrocarbon gas mixture even in the presence of a high water vapor content

    Exact eigenvalue spectrum of a class of fractal scale-free networks

    Full text link
    The eigenvalue spectrum of the transition matrix of a network encodes important information about its structural and dynamical properties. We study the transition matrix of a family of fractal scale-free networks and analytically determine all the eigenvalues and their degeneracies. We then use these eigenvalues to evaluate the closed-form solution to the eigentime for random walks on the networks under consideration. Through the connection between the spectrum of transition matrix and the number of spanning trees, we corroborate the obtained eigenvalues and their multiplicities.Comment: Definitive version accepted for publication in EPL (Europhysics Letters

    Multiphoton radiative recombination of electron assisted by laser field

    Get PDF
    In the presence of an intensive laser field the radiative recombination of the continuum electron into an atomic bound state generally is accompanied by absorption or emission of several laser quanta. The spectrum of emitted photons represents an equidistant pattern with the spacing equal to the laser frequency. The distribution of intensities in this spectrum is studied employing the Keldysh-type approximation, i.e. neglecting interaction of the impact electron with the atomic core in the initial continuum state. Within the adiabatic approximation the scale of emitted photon frequencies is subdivided into classically allowed and classically forbidden domains. The highest intensities correspond to emission frequencies close to the edges of classically allowed domain. The total cross section of electron recombination summed over all emitted photon channels exhibits negligible dependence on the laser field intensity.Comment: 14 pages, 5 figures (Figs.2-5 have "a" and "b" parts), Phys.Rev.A accepted for publication. Fig.2b is presented correctl
    • 

    corecore