211 research outputs found
Dynamics of cluster deposition on Ar surface
Using a combined quantum mechanical/classical method, we study the dynamics
of deposition of small Na clusters on Ar(001) surface. We work out basic
mechanisms by systematic variation of substrate activity, impact energy,
cluster orientations, cluster sizes, and charges. The soft Ar material is found
to serve as an extremely efficient shock absorber which provides cluster
capture in a broad range of impact energies. Reflection is only observed in
combination with destruction of the substrate. The kinetic energy of the
impinging cluster is rapidly transfered at first impact. The distribution of
the collision energy over the substrate proceeds very fast with velocity of
sound. The full thermalization of ionic and atomic energies goes at a much
slower pace with times of several ps. Charged clusters are found to have a much
stronger interface interaction and thus get in significantly closer contact
with the surface.Comment: 10 pages, 6 figures, accepted in Euro. Phys. J.
Hindered Coulomb explosion of embedded Na clusters -- stopping, shape dynamics and energy transport
We investigate the dynamical evolution of a Na cluster embedded in Ar
matrices of various sizes from N=30 to 1048. The system is excited by an
intense short laser pulse leading to high ionization stages. We analyze the
subsequent highly non-linear motion of cluster and Ar environment in terms of
trajectories, shapes, and energy flow. The most prominent effects are:
temporary stabilization of high charge states for several ps, sudden stopping
of the Coulomb explosion of the embedded Na clusters associated with an
extremely fast energy transfer to the Ar matrix, fast distribution of energy
throughout the Ar layers by a sound wave. Other ionic-atomic transfer and
relaxation processes proceed at slower scale of few ps. The electron cloud is
almost thermally decoupled from ions and thermalizes far beyond the ps scale.Comment: 12 pages, 10 figures, accepted in Euro. Phys. J.
Dynamics of metal clusters in rare gas clusters
We investigate the dynamics of Na clusters embedded in Ar matrices. We use a
hierarchical approach, accounting microscopically for the cluster's degrees of
freedom and more coarsely for the matrix. The dynamical polarizability of the
Ar atoms and the strong Pauli-repulsion exerted by the Ar-electrons are taken
into account. We discuss the impact of the matrix on the cluster gross
properties and on its optical response. We then consider a realistic case of
irradiation by a moderately intense laser and discuss the impact of the matrix
on the hindrance of the explosion, as well as a possible pump probe scenario
for analyzing dynamical responses.Comment: Proceedings of the 30th International Workshop on Condensed Matter
Theories, Dresden, June 05 - 10, 2006, World Scientific. 3 figure
Evidence of Introgression of the ace-1R Mutation and of the ace-1 Duplication in West African Anopheles gambiae s. s
Background: The role of inter-specific hybridisation is of particular importance in mosquito disease vectors for predicting the evolution of insecticide resistance. Two molecular forms of Anopheles gambiae s.s., currently recognized as S and M taxa, are considered to be incipient sibling species. Hybrid scarcity in the field was suggested that differentiation of M and S taxa is maintained by limited or absent gene flow. However, recent studies have revealed shared polymorphisms within the M and S forms, and a better understanding of the occurrence of gene flow is needed. One such shared polymorphism is the G119S mutation in the ace-1 gene (which is responsible for insecticide resistance); this mutation has been described in both the M and S forms of A. gambiae s.s. Methods and Results: To establish whether the G119S mutation has arisen independently in each form or by genetic introgression, we analysed coding and non-coding sequences of ace-1 alleles in M and S mosquitoes from representative field populations. Our data revealed many polymorphic sites shared by S and M forms, but no diversity was associated with the G119S mutation. These results indicate that the G119S mutation was a unique event and that genetic introgression explains the observed distribution of the G119S mutation within the two forms. However, it was impossible to determine from our data whether the mutation occurred first in the S form or in the M form. Unexpectedly, sequence analysis of some resistant individuals revealed a duplication of the ace-1 gene that was observed in both A. gambiae s.s. M and S forms. Again, the distribution of this duplication in the two forms most likely occurred through introgression. Conclusions: These results highlight the need for more research to understand the forces driving the evolution of insecticide resistance in malaria vectors and to regularly monitor resistance in mosquito populations of Africa
Telomere and telomerase in stem cells
Telomeres, guanine-rich tandem DNA repeats of the chromosomal end, provide chromosomal stability, and cellular replication causes their loss. In somatic cells, the activity of telomerase, a reverse transcriptase that can elongate telomeric repeats, is usually diminished after birth so that the telomere length is gradually shortened with cell divisions, and triggers cellular senescence. In embryonic stem cells, telomerase is activated and maintains telomere length and cellular immortality; however, the level of telomerase activity is low or absent in the majority of stem cells regardless of their proliferative capacity. Thus, even in stem cells, except for embryonal stem cells and cancer stem cells, telomere shortening occurs during replicative ageing, possibly at a slower rate than that in normal somatic cells. Recently, the importance of telomere maintenance in human stem cells has been highlighted by studies on dyskeratosis congenital, which is a genetic disorder in the human telomerase component. The regulation of telomere length and telomerase activity is a complex and dynamic process that is tightly linked to cell cycle regulation in human stem cells. Here we review the role of telomeres and telomerase in the function and capacity of the human stem cells
Hypoxia Inhibits Osteogenesis in Human Mesenchymal Stem Cells through Direct Regulation of RUNX2 by TWIST
Bone loss induced by hypoxia is associated with various pathophysiological conditions, however, little is known about the effects of hypoxia and related signaling pathways on osteoblast differentiation and bone formation. Because bone marrow-derived mesenchymal stem cells (MSCs) survive under hypoxic conditions and readily differentiate into osteoblasts by standard induction protocols, they are a good in vitro model to study the effects of hypoxia on osteoblast differentiation.Using human MSCs, we discovered TWIST, a downstream target of HIF-1α, was induced under hypoxia and acted as a transcription repressor of RUNX2 through binding to the E-box located on the promoter of type 1 RUNX2. Suppression of type 1 RUNX2 by TWIST under hypoxia further inhibited the expression of BMP2, type 2 RUNX2 and downstream targets of RUNX2 in MSCs.Our findings point to the important role of hypoxia-mediated signalling in osteogenic differentiation in MSCs through direct regulation of RUNX2 by TWIST, and provide a method for modifying MSC osteogenesis upon application of these cells in fracture healing and bone reconstruction
- …