1,545 research outputs found

    Vibrational signatures for low-energy intermediate-sized Si clusters

    Get PDF
    We report low-energy locally stable structures for the clusters Si20 and Si21. The structures were obtained by performing geometry optimizations within the local density approximation. Our calculated binding energies for these clusters are larger than any previously reported for this size regime. To aid in the experimental identification of the structures, we have computed the full vibrational spectra of the clusters, along with the Raman and IR activities of the various modes using a recently developed first-principles technique. These represent, to our knowledge, the first calculations of Raman and IR spectra for Si clusters of this size

    The Hamiltonian of the V15_{15} Spin System from first-principles Density-Functional Calculations

    Full text link
    We report first-principles all-electron density-functional based studies of the electronic structure, magnetic ordering and anisotropy for the V15_{15} molecular magnet. From these calculations, we determine a Heisenberg Hamiltonian with four antiferromagnetic and one {\em ferromagnetic} coupling. We perform direct diagonalization to determine the temperature dependence of the susceptibility. This Hamiltonian reproduces the experimentally observed spin SS=1/2 ground state and low-lying SS=3/2 excited state. A small anisotropy term is necessary to account for the temperature independent part of the magnetization curve.Comment: 4 pages in RevTeX format + 2 ps-figures, accepted by PRL Feb. 2001 (previous version was an older version of the paper

    Photo-excitation of a light-harvesting supra-molecular triad: a Time-Dependent DFT study

    Full text link
    We present the first time-dependent density-functional theory (TDDFT) calculation on a light harvesting triad carotenoid-diaryl-porphyrin-C60. Besides the numerical challenge that the ab initio study of the electronic structure of such a large system presents, we show that TDDFT is able to provide an accurate description of the excited state properties of the system. In particular we calculate the photo-absorption spectrum of the supra-molecular assembly, and we provide an interpretation of the photo-excitation mechanism in terms of the properties of the component moieties. The spectrum is in good agreement with experimental data, and provides useful insight on the photo-induced charge transfer mechanism which characterizes the system.Comment: Accepted for publication on JPC, March 09th 200

    Electric control of spin states in frustrated triangular molecular magnets

    Full text link
    Frustrated triangular molecular magnets are a very important class of magnetic molecules since the absence of inversion symmetry allows an external electric field to couple directly with the spin chirality that characterizes their ground state. The spin-electric coupling in these molecular magnets leads to an efficient and fast method of manipulating spin states, making them an exciting candidate for quantum information processing. The efficiency of the spin-electric coupling depends on the electric dipole coupling between the chiral ground states of these molecules. In this paper, we report on first-principles calculations of spin-electric coupling in {V3}\{V_3\} triangular magnetic molecule. We have explicitly calculated the spin-induced charge redistribution within the magnetic centers that is responsible for the spin-electric coupling. Furthermore, we have generalized the method of calculating the strength of the spin-electric coupling to calculate any triangular spin 1/2 molecule with C3C_3 symmetry and have applied it to calculate the coupling strength in {V15}\{V_{15}\} molecular magnets

    Electric control of a {Fe4}\{Fe_4\} single-molecule magnet in a single-electron transistor

    Full text link
    Using first-principles methods we study theoretically the properties of an individual {Fe4}\{Fe_4\} single-molecule magnet (SMM) attached to metallic leads in a single-electron transistor geometry. We show that the conductive leads do not affect the spin ordering and magnetic anisotropy of the neutral SMM. On the other hand, the leads have a strong effect on the anisotropy of the charged states of the molecule, which are probed in Coulomb blockade transport. Furthermore, we demonstrate that an external electric potential, modeling a gate electrode, can be used to manipulate the magnetic properties of the system. For a charged molecule, by localizing the extra charge with the gate voltage closer to the magnetic core, the anisotropy magnitude and spin ordering converges to the values found for the isolated {Fe4}\{Fe_4\} SMM. We compare these findings with the results of recent quantum transport experiments in three-terminal devices

    Non-collinear first-principles studies of the spin-electric coupling in frustrated triangular molecular magnets

    Full text link
    Frustrated triangular molecular magnets (MMs) with anti-ferromagnetic ground states (GS) are an important class of magnetic systems with potential applications in quantum information processing. The two-fold degenerate GS of these molecules, characterized by spin chirality, can be utilized to encode qubits for quantum computing. Furthermore, because of the lack of inversion symmetry in these molecules, an electric field couples directly states of opposite chirality, allowing a very efficient and fast control of the qubits. In this work we present a theoretical method to calculate the spin-electric coupling for triangular MMs with effective {\it local} spins ss larger than 1/2, which is amenable to a first-principles implementation based on density functional theory (DFT). In contrast to MMs where the net magnetization at the magnetic atoms is μB/2\mu_{\rm B}/2 (μB\mu_{\rm B} is the Bohr magneton), the DFT treatment of frustrated triangular MMs with larger local magnetizations requires a fully non-collinear approach, which we have implemented in the NRLMOL DFT code. As an example, we have used these methods to evaluate the spin-electric coupling for a spin s=5/2s = 5/2 {Fe3}\{\mathrm{Fe_3}\} triangular MM, where this effect has been observed experimentally for the first time quite recently. Our theoretical and computational methods will help elucidate and further guide ongoing experimental work in the field of quantum molecular spintronics.Comment: 9 pages, 6 figure

    Jurassic earthquake sequence recorded by multiple generations of sand blows, Zion National Park, Utah

    Get PDF
    Earthquakes along convergent plate boundaries commonly occur in sequences that are complete within 1 yr, and may include 8–10 events strong enough to generate sand blows. Dune crossbeds within the Jurassic Navajo Sandstone of Utah (western United States) enclose intact and truncated sand blows, and the intrusive structures that fed them. We mapped the distribution of more than 800 soft-sediment dikes and pipes at two small sites. All water-escape structures intersect a single paleo-surface, and are limited to the upper portion of the underlying set of cross-strata and the lower portion of the overlying set. A small portion of one set of crossbeds that represents ~1 yr of dune migration encloses eight generations of eruptive events. We interpret these superimposed depositional and deformational structures as the record of a single shock-aftershock earthquake sequence. The completeness and temporal detail of this paleoseismic record are unique, and were made possible when sand blows repeatedly erupted onto lee slopes of migrating dunes. Similar records should be sought in modern dunefields with shallow water tables

    Effect of local Coulomb interactions on the electronic structure and exchange interactions in Mn12 magnetic molecules

    Get PDF
    We have studied the effect of local Coulomb interactions on the electronic structure of the molecular magnet Mn12-acetate within the LDA+U approach. The account of the on-site repulsion results in a finite energy gap and an integer value of the molecule's magnetic moment, both quantities being in a good agreement with the experimental results. The resulting magnetic moments and charge states of non-equivalent manganese ions agree very well with experiments. The calculated values of the intramolecular exchange parameters depend on the molecule's spin configuration, differing by 25-30% between the ferrimagnetic ground state and the completely ferromagnetic configurations. The values of the ground-state exchange coupling parameters are in reasonable agreement with the recent data on the magnetization jumps in megagauss magnetic fields. Simple estimates show that the obtained exchange parameters can be applied, at least qualitatively, to the description of the spin excitations in Mn12-acetate.Comment: RevTeX, LaTeX2e, 4 EPS figure
    • …
    corecore