11,638 research outputs found

    Herzberg Circuit and Berry's Phase in Chirality-based Coded Qubit in a Triangular Triple Quantum Dot

    Full text link
    We present a theoretical proposal for the Herzberg circuit and controlled accumulation of Berry's phase in a chirality-based coded qubit in a triangular triple quantum dot molecule with one electron spin each. The qubit is encoded in the two degenerate states of a three spin complex with total spin S=1/2S=1/2. Using a Hubbard and Heisenberg model the Herzberg circuit encircling the degeneracy point is realized by adiabatically tuning the successive on-site energies of quantum dots and tunnel couplings across a pair of neighbouring dots. It is explicitly shown that encircling the degeneracy point leads to the accumulation of the geometrical Berrys phase. We show that only triangular but not linear quantum dot molecule allows for the generation of Berry's phase and we discuss a protocol to detect this geometrical phase

    Integrated Light 2MASS IR Photometry of Galactic Globular Clusters

    Full text link
    We have mosaiced 2MASS images to derive surface brightness profiles in JHK for 104 Galactic globular clusters. We fit these with King profiles, and show that the core radii are identical to within the errors for each of these IR colors, and are identical to the core radii at V in essentially all cases. We derive integrated light colors V-J, V-H, V-K_s, J-H and J-K_s for these globular clusters. Each color shows a reasonably tight relation between the dereddened colors and metallicity. Fits to these are given for each color. The IR--IR colors have very small errors due largely to the all-sky photometric calibration of the 2MASS survey, while the V-IR colors have substantially larger uncertainties. We find fairly good agreement with measurements of integrated light colors for a smaller sample of Galactic globular clusters by Aaronson, Malkan & Kleinmann from 1977. Our results provide a calibration for the integrated light of distant single burst old stellar populations from very low to Solar metallicities. A comparison of our dereddened measured colors with predictions from several models of the integrated light of single burst old populations shows good agreement in the low metallicity domain for V-K_s colors, but an offset at a fixed [Fe/H] of ~0.1 mag in J-K_s, which we ascribe to photometric system transformation issues. Some of the models fail to reproduce the behavior of the integrated light colors of the Galactic globular clusters near Solar metallicity.Comment: Accepted for publication in the A

    Sirolimus Associated Pneumonitis after Nonmyeloablative Peripheral Blood Stem Cell Transplant for Sickle Cell Disease

    Get PDF

    Differential contributions of A- and C-nociceptors to primary and secondary inflammatory hypersensitivity in the rat

    Get PDF
    Primary hyperalgesia is characterized by increased responsiveness to both heat and mechanical stimulation in the area of injury. By contrast, secondary hyperalgesia is generally associated with increased responses to mechanical but not heat stimuli. We tested the hypothesis that sensitization in secondary hyperalgesia is dependent on the class of peripheral nociceptor (C- or A-nociceptor) rather than the modality of stimulation (mechanical vs heat). A- and C-nociceptors were selectively activated using contact heat ramps applied to the hind paw dorsum in animals with hind paw inflammation (primary hyperalgesia) and knee inflammatory arthritis (secondary hyperalgesia). Sensitization to A- and C-nociceptor activation in primary and secondary hyperalgesia was assessed by reflex withdrawal thresholds and by Fos immunocytochemistry in the dorsal horn of the spinal cord, as an index of neuronal activation. In primary hyperalgesia, only C-nociceptor-evoked withdrawal reflexes were sensitized. This was associated with increased spinal lamina I neuronal activation to both A- and C-nociceptor activation. Fos-like immunoreactivity (FLI) was unchanged in other dorsal horn laminae. In secondary hyperalgesia, only A-nociceptor-evoked withdrawal reflexes were sensitized, and FLI was increased in both superficial and deep dorsal laminae. Neurons in the superficial dorsal horn receive and process nociceptor inputs from the area of primary hyperalgesia, resulting in functional sensitization to C-nociceptive inputs. In inflammatory arthritis, secondary hyperalgesia is evoked by A-nociceptor thermal stimulation, suggesting that secondary hyperalgesia is A-nociceptor, rather than stimulus modality (mechanical vs thermal), dependent. Fos-like immunoreactivity evoked by A-nociceptor stimulation in secondary hyperalgesia suggests that the sensitization is underpinned by spinal neuronal sensitization in laminae I and IV/V

    Fermi surface topology and low-lying quasiparticle structure of magnetically ordered Fe1+xTe

    Full text link
    We report the first photoemission study of Fe1+xTe - the host compound of the newly discovered iron-chalcogenide superconductors. Our results reveal a pair of nearly electron- hole compensated Fermi pockets, strong Fermi velocity renormalization and an absence of a spin-density-wave gap. A shadow hole pocket is observed at the "X"-point of the Brillouin zone which is consistent with a long-range ordered magneto-structural groundstate. No signature of Fermi surface nesting instability associated with Q= pi(1/2, 1/2) is observed. Our results collectively reveal that the Fe1+xTe series is dramatically different from the undoped phases of the high Tc pnictides and likely harbor unusual mechanism for superconductivity and quantum magnetic order.Comment: 5 pages, 4 Figures; Submitted to Phys. Rev. Lett. (2009

    Quantum properties of the Dirac field on BTZ black hole backgrounds

    Full text link
    We consider a Dirac field on a (1+2)(1 + 2)-dimensional uncharged BTZ black hole background. We first find out the Dirac Hamiltonian, and study its self-adjointness properties. We find that, in analogy to the Kerr-Newman-AdS Dirac Hamiltonian in (1+3)(1+3) dimensions, essential self-adjointness on C0∞(r+,∞)2C_0^{\infty}(r_+,\infty)^2 of the reduced (radial) Hamiltonian is implemented only if a suitable relation between the mass μ\mu of the Dirac field and the cosmological radius ll holds true. The very presence of a boundary-like behaviour of r=∞r=\infty is at the root of this problem. Also, we determine in a complete way qualitative spectral properties for the non-extremal case, for which we can infer the absence of quantum bound states for the Dirac field. Next, we investigate the possibility of a quantum loss of angular momentum for the (1+2)(1 + 2)-dimensional uncharged BTZ black hole. Unlike the corresponding stationary four-dimensional solutions, the formal treatment of the level crossing mechanism is much simpler. We find that, even in the extremal case, no level crossing takes place. Therefore, no quantum loss of angular momentum via particle pair production is allowed.Comment: 19 pages; IOP styl

    Volume Fractions of the Kinematic "Near-Critical" Sets of the Quantum Ensemble Control Landscape

    Full text link
    An estimate is derived for the volume fraction of a subset CϵP={U:∣∣gradJ(U)∣≤ϵ}⊂U(N)C_{\epsilon}^{P} = \{U : ||grad J(U)|\leq {\epsilon}\}\subset\mathrm{U}(N) in the neighborhood of the critical set CP≃U(n)PU(m)C^{P}\simeq\mathrm{U}(\mathbf{n})P\mathrm{U}(\mathbf{m}) of the kinematic quantum ensemble control landscape J(U) = Tr(U\rho U' O), where UU represents the unitary time evolution operator, {\rho} is the initial density matrix of the ensemble, and O is an observable operator. This estimate is based on the Hilbert-Schmidt geometry for the unitary group and a first-order approximation of ∣∣gradJ(U)∣∣2||grad J(U)||^2. An upper bound on these near-critical volumes is conjectured and supported by numerical simulation, leading to an asymptotic analysis as the dimension NN of the quantum system rises in which the volume fractions of these "near-critical" sets decrease to zero as NN increases. This result helps explain the apparent lack of influence exerted by the many saddles of JJ over the gradient flow.Comment: 27 pages, 1 figur

    A topological insulator surface under strong Coulomb, magnetic and disorder perturbations

    Full text link
    Three dimensional topological insulators embody a newly discovered state of matter characterized by conducting spin-momentum locked surface states that span the bulk band gap as demonstrated via spin-resolved ARPES measurements . This highly unusual surface environment provides a rich ground for the discovery of novel physical phenomena. Here we present the first controlled study of the topological insulator surfaces under strong Coulomb, magnetic and disorder perturbations. We have used interaction of iron, with a large Coulomb state and significant magnetic moment as a probe to \textit{systematically test the robustness} of the topological surface states of the model topological insulator Bi2_2Se3_3. We observe that strong perturbation leads to the creation of odd multiples of Dirac fermions and that magnetic interactions break time reversal symmetry in the presence of band hybridization. We also present a theoretical model to account for the altered surface of Bi2_2Se3_3. Taken collectively, these results are a critical guide in manipulating topological surfaces for probing fundamental physics or developing device applications.Comment: 14 pages, 4 Figures. arXiv admin note: substantial text overlap with arXiv:1009.621
    • …
    corecore