226 research outputs found
Tractable Combinations of Global Constraints
We study the complexity of constraint satisfaction problems involving global
constraints, i.e., special-purpose constraints provided by a solver and
represented implicitly by a parametrised algorithm. Such constraints are widely
used; indeed, they are one of the key reasons for the success of constraint
programming in solving real-world problems.
Previous work has focused on the development of efficient propagators for
individual constraints. In this paper, we identify a new tractable class of
constraint problems involving global constraints of unbounded arity. To do so,
we combine structural restrictions with the observation that some important
types of global constraint do not distinguish between large classes of
equivalent solutions.Comment: To appear in proceedings of CP'13, LNCS 8124. arXiv admin note: text
overlap with arXiv:1307.179
Generalized stacking fault energy surfaces and dislocation properties of aluminum
We have employed the semidiscrete variational generalized Peierls-Nabarro
model to study the dislocation core properties of aluminum. The generalized
stacking fault energy surfaces entering the model are calculated by using
first-principles Density Functional Theory (DFT) with pseudopotentials and the
embedded atom method (EAM). Various core properties, including the core width,
splitting behavior, energetics and Peierls stress for different dislocations
have been investigated. The correlation between the core energetics and
dislocation character has been explored. Our results reveal a simple
relationship between the Peierls stress and the ratio between the core width
and atomic spacing. The dependence of the core properties on the two methods
for calculating the total energy (DFT vs. EAM) has been examined. The EAM can
give gross trends for various dislocation properties but fails to predict the
finer core structures, which in turn can affect the Peierls stress
significantly (about one order of magnitude).Comment: 25 pages, 12 figure
The STAR MAPS-based PiXeL detector
The PiXeL detector (PXL) for the Heavy Flavor Tracker (HFT) of the STAR
experiment at RHIC is the first application of the state-of-the-art thin
Monolithic Active Pixel Sensors (MAPS) technology in a collider environment.
Custom built pixel sensors, their readout electronics and the detector
mechanical structure are described in detail. Selected detector design aspects
and production steps are presented. The detector operations during the three
years of data taking (2014-2016) and the overall performance exceeding the
design specifications are discussed in the conclusive sections of this paper
Russian with English abstract | (The mechanism of the phlogopite - hydrophlogopite - vermiculite transformation on the basis of optical and Mossbauer spectroscopy.)
The determination of the structural distribution and energy state of Fe 2+ and Fe 3+ ions in phlogopites, and the products of their phase transformation in the oxidation zone of the weathering crust, has been undertaken on micas of three genetic groups. These groups are those developed in: 1) massifs of alkaline ultramafic-carbonatites (Kovdor deposit), 2) massifs associated with poly-associational complexes of ultramafic-alkaline gabbroids (Inagli deposit), and 3) massifs confined to Precambrian magnesian skarns (Emel'dzhak, Kuronakh, and other deposits of the Aldan Shield). This study has enabled the authors to recognize certain forms of these ions in the newly-formed structures and to identify crystallochemical criteria for classifying the minerals of the phlogopite - hydrophlogopite - vermiculite series. The specific features of these structures are: 1) the appearance of a form of Fe 3+ ions with parameters that suggest their ordered distribution in the form of clusters, and 2) a reduction in the crystalline field force on the preserved Fe 2+ ions. -D.A.B
Micro-plasticity and intermittent dislocation activity in a simplified micro structural model
Here we present a model to study the micro-plastic regime of a stress-strain
curve. In this model an explicit dislocation population represents the mobile
dislocation content and an internal shear-stress field represents a mean-field
description of the immobile dislocation content. The mobile dislocations are
constrained to a simple dipolar mat geometry and modelled via a dislocation
dynamics algorithm, whilst the shear-stress field is chosen to be a sinusoidal
function of distance along the mat direction. The latter, defined by a periodic
length and a shear-stress amplitude, represents a pre-existing micro-structure.
These model parameters, along with the mobile dislocation density, are found to
admit a diversity of micro-plastic behaviour involving intermittent plasticity
in the form of a scale-free avalanche phenomenon, with an exponent for the
strain burst magnitude distribution similar to those seen in experiment and
more complex dislocation dynamics simulations.Comment: 30 pages, 12 figures, to appear in "Modelling and Simulation in
Materials Science and Engineering
Assessment of interatomic potentials for atomistic analysis of static and dynamic properties of screw dislocations in W
Screw dislocations in bcc metals display non-planar cores at zero temperature
which result in high lattice friction and thermally activated strain rate
behavior. In bcc W, electronic structure molecular statics calculations reveal
a compact, non-degenerate core with an associated Peierls stress between 1.7
and 2.8 GPa. However, a full picture of the dynamic behavior of dislocations
can only be gained by using more efficient atomistic simulations based on
semiempirical interatomic potentials. In this paper we assess the suitability
of five different potentials in terms of static properties relevant to screw
dislocations in pure W. As well, we perform molecular dynamics simulations of
stress-assisted glide using all five potentials to study the dynamic behavior
of screw dislocations under shear stress. Dislocations are seen to display
thermally-activated motion in most of the applied stress range, with a gradual
transition to a viscous damping regime at high stresses. We find that one
potential predicts a core transformation from compact to dissociated at finite
temperature that affects the energetics of kink-pair production and impacts the
mechanism of motion. We conclude that a modified embedded-atom potential
achieves the best compromise in terms of static and dynamic screw dislocation
properties, although at an expense of about ten-fold compared to central
potentials
A Multiscale Approach to Determination of Thermal Properties and Changes in Free Energy: Application to Reconstruction of Dislocations in Silicon
We introduce an approach to exploit the existence of multiple levels of
description of a physical system to radically accelerate the determination of
thermodynamic quantities. We first give a proof of principle of the method
using two empirical interatomic potential functions. We then apply the
technique to feed information from an interatomic potential into otherwise
inaccessible quantum mechanical tight-binding calculations of the
reconstruction of partial dislocations in silicon at finite temperature. With
this approach, comprehensive ab initio studies at finite temperature will now
be possible.Comment: 5 pages, 3 figure
Implications of SU(2) symmetry on the dynamics of population difference in the two-component atomic vapor
We present an exact many body solution for the dynamics of the population
difference induced by an rf-field in the two-component atomic cloud
characterized by equal scattering lengths. This situation is very close to the
actual JILA experiments with the two-component Rb vapor. We show that no
intrinsic decoherence exists for , provided the exact SU(2) symmetry
holds. This contrasts with finite dissipation of the normal modes even in the
presence of the SU(2) symmetry. The intrinsic decoherence for \ may
occur as long as deviations from the exact SU(2) symmetry are taken into
account. Such decoherence, however, should be characterized by very long times
governed by the smallness of the deviations from the symmetry. We suggest
testing the evolution of by conducting echo-type experiments.Comment: 5 RevTex pages, no figures, typos correcte
Lattice Resistance and Peierls Stress in Finite-size Atomistic Dislocation Simulations
Atomistic computations of the Peierls stress in fcc metals are relatively
scarce. By way of contrast, there are many more atomistic computations for bcc
metals, as well as mixed discrete-continuum computations of the Peierls-Nabarro
type for fcc metals. One of the reasons for this is the low Peierls stresses in
fcc metals. Because atomistic computations of the Peierls stress take place in
finite simulation cells, image forces caused by boundaries must either be
relaxed or corrected for if system size independent results are to be obtained.
One of the approaches that has been developed for treating such boundary forces
is by computing them directly and subsequently subtracting their effects, as
developed by V. B. Shenoy and R. Phillips [Phil. Mag. A, 76 (1997) 367]. That
work was primarily analytic, and limited to screw dislocations and special
symmetric geometries. We extend that work to edge and mixed dislocations, and
to arbitrary two-dimensional geometries, through a numerical finite element
computation. We also describe a method for estimating the boundary forces
directly on the basis of atomistic calculations. We apply these methods to the
numerical measurement of the Peierls stress and lattice resistance curves for a
model aluminum (fcc) system using an embedded-atom potential.Comment: LaTeX 47 pages including 20 figure
Null Energy Condition Violation and Classical Stability in the Bianchi I Metric
The stability of isotropic cosmological solutions in the Bianchi I model is
considered. We prove that the stability of isotropic solutions in the Bianchi I
metric for a positive Hubble parameter follows from their stability in the
Friedmann-Robertson-Walker metric. This result is applied to models inspired by
string field theory, which violate the null energy condition. Examples of
stable isotropic solutions are presented. We also consider the k-essence model
and analyse the stability of solutions of the form .Comment: 27 pages, references added, accepted for publication in Phys. Rev.
- …