435 research outputs found

    Spasmodic dysphonia may respond to bilateral thalamic deep brain stimulation

    Get PDF
    Background Spasmodic dysphonia is a primary focal dystonia manifested by loss of control of the vocal muscles during speech secondary to laryngeal muscle spasms. The pathophysiology is not well understood. Deep brain stimulation surgery (DBS) for other focal dystonias has been well reported. Methods We report the first case of bilateral thalamic DBS improving spasmodic dystonia (SD) in a patient with essential tremor.Results This case demonstrates the beneficial of effects of bilateral thalamic DBS for both ET of the hands and AdSD of the vocal cords.Conclusions The potential pathophysiologic mechanisms of this finding are discussed

    The Surprising Story of Fusicoccin: A Wilt-Inducing Phytotoxin, a Tool in Plant Physiology and a 14-3-3-Targeted Drug

    Get PDF
    Fusicoccin is the alpha glucoside of a carbotricyclic diterpene, produced by the fungus Phomopsis amygdali (previously classified as Fusicoccum amygdali), the causal agent of almond and peach canker disease. A great interest in this molecule started when it was discovered that it brought about an irreversible stomata opening of higher plants, thereby inducing the wilting of their leaves. Since then, several studies were carried out to elucidate its biological activity, biosynthesis, structure, structure-activity relationships and mode of action. After sixty years of research and more than 1800 published articles, FC is still the most studied phytotoxin and one of the few whose mechanism of action has been elucidated in detail. The ability of FC to stimulate several fundamental plant processes depends on its ability to activate the plasma membrane H+-ATPase, induced by eliciting the association of 14-3-3 proteins, a class of regulatory molecules widespread in eukaryotes. This discovery renewed interest in FC and prompted more recent studies aimed to ascertain the ability of the toxin to influence the interaction between 14-3-3 proteins and their numerous client proteins in animals, involved in the regulation of basic cellular processes and in the etiology of different diseases, including cancer. This review covers the different aspects of FC research partially treated in different previous reviews, starting from its discovery in 1964, with the aim to outline the extraordinary pathway which led this very uncommon diterpenoid to evolve from a phytotoxin into a tool in plant physiology and eventually into a 14-3-3-targeted drug

    Drazepinone, a trisubstituted tetrahydronaphthofuroazepinone with herbicidal activity produced by Drechslera siccans

    Get PDF
    When grown in a minimal-defined medium, a strain of Drechslera siccans, a pathogenic fungus isolated from seeds of Lolium perenne, produced phytotoxic metabolites. This strain is one of the best toxin producers among several grass pathogenic fungal strains collected and tested to find phytotoxins to be used as natural herbicides of monocot weeds. From the culture filtrates of D. siccans, we isolated a new phytotoxic trisubstituted naphthofuroazepinone, named drazepinone, and characterised it as a 3,5,12a-trimethyl-2,5,5a,12a-tetrahydro- 1H-naphtho[2′,3′:4,5]furo[2,3-b]azepin-2-one. Assayed at 2 μg μl-1 solution the novel metabolite proved to have broad-spectrum herbicidal properties, without antibacterial and antifungal activities, and low zootoxic activity. Its original chemical structure and the interesting biological properties make drazepinone a potential natural herbicide. © 2005 Elsevier Ltd. All rights reserved

    Inuloxin E, a New Seco-Eudesmanolide Isolated from Dittrichia viscosa, Stimulating Orobanche cumana Seed Germination

    Get PDF
    A new sesquiterpenoid belonging to the subgroup seco-eudesmanolides and named inuloxin E was isolated from Dittrichia viscosa, together with the already known sesquiterpenoids inuloxins A–D and -costic acid. Inuloxin E was characterized by spectroscopic data (essentially NMR and ESIMS) as 3-methylene-6-(1-methyl-4-oxo-pentyl)-3a,4,7,7a-tetrahydro-3H-benzofuran-2-one. Its relative configuration was determined by comparison with the closely related inuloxin D and chemical conversion of inuloxin E into inuloxin D and by the observed significant correlation in the NOESY spectrum. Both inuloxins D and E induced germination of the parasitic weed Orobanche cumana, but were inactive on the seeds of Orobanche minor and Phelipanche ramosa. The germination activity of some hemisynthetic esters of inuloxin D was also investigated

    Ophiobolin E and 8-epi-ophiobolin J produced by Drechslera gigantea, a potential mycoherbicide of weedy grasses

    Get PDF
    Drechslera gigantea, a fungal pathogen isolated from large crabgrass (Digitaria sanguinalis) and proposed as a potential mycoherbicide of grass weeds, produces phytotoxic metabolites in liquid and solid cultures. Ophiobolin A and three minor ophiobolins i.e., 6-epi-ophiobolin A, 3-anhydro-6-epi-ophiobolin A and ophiobolin I were obtained from the liquid culture broths. Interestingly and unexpectedly, ophiobolins also appeared in cultures of this fungus and they were isolated together with the known ophiobolins B and J, and designed as ophiobolin E and 8-epi-ophiobolin J. They were characterized using essentially spectroscopic methods. It is noteworthy that D. gigantea produces such a plethora of bioactive organic substances. Some structure-activity relationship results are also discussed in this report. © 2006 Elsevier Ltd. All rights reserved

    first isolation of acetovanillone and piceol from crinum buphanoides and crinum graminicola i verd amaryllidaceae

    Get PDF
    Screening of three native South African Amaryllidaceae bulbs, aimed at finding new metabolites for their promising biological activities, lead to the initial discovery of two interesting non-alkaloid compounds viz., acetovanillone 1 (also known as apocynin) and 4-hydroxyacetophenone 2 (also named piceol) isolated from Crinum buphonoides, while only the former was isolated from Crinum graminicola. This is the first time that acetovanillone 1 and piceol 2 were isolated from C. graminicola and C. buphanoides, respectively. Acetovanillone 1 was recently reported as a metabolite of Boophane disticha (L.f.), another South Africa Amaryllidacea species
    • …
    corecore