258 research outputs found

    Structural-functional development policies for converted villages to cities for ordering urban network. Case of East Azerbaijan Province/Iran

    Get PDF
    In IRAN Converting villages to new city centers is realized for the purpose of ordering urban networks via establishing new cities to service rural jurisdictions. But after converting to city, they have no special development plan and their authorities actually do not know about the problems to face with. This research has been done on 12 converted villages to cities in East Azerbaijan province (IRAN) by determining 100 indices in 9 main groups and using questionnaire, official data as well as geographical maps. After scoring each item and placing in a SWOT matrix it could be possible to propose special policies and plans for each settlements. The method can be easily applied in rural centers and small cities to help local authorities to make proper developmental decisions.Keywords: Converted villages to city centers, urban network, SWOT analysis, East Azerbaijan province in IRA

    Unexpected cell type-dependent effects of autophagy on polyglutamine aggregation revealed by natural genetic variation in C. elegans.

    Get PDF
    BACKGROUND: Monogenic protein aggregation diseases, in addition to cell selectivity, exhibit clinical variation in the age of onset and progression, driven in part by inter-individual genetic variation. While natural genetic variants may pinpoint plastic networks amenable to intervention, the mechanisms by which they impact individual susceptibility to proteotoxicity are still largely unknown. RESULTS: We have previously shown that natural variation modifies polyglutamine (polyQ) aggregation phenotypes in C. elegans muscle cells. Here, we find that a genomic locus from C. elegans wild isolate DR1350 causes two genetically separable aggregation phenotypes, without changing the basal activity of muscle proteostasis pathways known to affect polyQ aggregation. We find that the increased aggregation phenotype was due to regulatory variants in the gene encoding a conserved autophagy protein ATG-5. The atg-5 gene itself conferred dosage-dependent enhancement of aggregation, with the DR1350-derived allele behaving as hypermorph. Surprisingly, increased aggregation in animals carrying the modifier locus was accompanied by enhanced autophagy activation in response to activating treatment. Because autophagy is expected to clear, not increase, protein aggregates, we activated autophagy in three different polyQ models and found a striking tissue-dependent effect: activation of autophagy decreased polyQ aggregation in neurons and intestine, but increased it in the muscle cells. CONCLUSIONS: Our data show that cryptic natural variants in genes encoding proteostasis components, although not causing detectable phenotypes in wild-type individuals, can have profound effects on aggregation-prone proteins. Clinical applications of autophagy activators for aggregation diseases may need to consider the unexpected divergent effects of autophagy in different cell types

    Anticancer activity of curcumin on human breast adenocarcinoma: Role of Mcl-1 gene

    Get PDF
    Background: Breast cancer is the second leading cause of cancer-related death among females in the world. To date, chemotherapy has been the most frequently used treatment for breast cancer and other cancers. However, some natural products have been used, as alternative treatments for cancers including breast cancer, due to their wide range of biological activities and low toxicity in animal models. Objectives: The present study examined the anti-proliferative activity of curcumin and its effect(s) on the apoptosis of breast cancer cells. Materials and Methods: This study was performed by an in vitro assay and the anticancer effects of curcumin were determined by MTT (3-4,5-dimethylthiazol-2-yl-2,5 diphenyl tetrazolium bromide). We used quantitative real time Polymerase Chain Reaction (PCR) for detection of Mcl-1 gene expression in treated groups and then compared them to control samples. Results: In the treatment group, there were higher levels of cell death changes than the control group. The results also showed that the Mcl-1 gene expression declined in the tested group as compared to the control group. Conclusions: Our present findings indicated that curcumin significantly inhibited the growth of human breast cancer cell MCF-7 by inducing apoptosis in a dose- and time- dependent manner, accompanied by a decrease in MCF-7 cell viability. Furthermore, our results showed that quantitative real-time PCR could be used as a direct method for detection Mcl-1 gene expression in tested samples and normal samples. © 2015, Iranian Journal of Cancer Prevention

    Effect of Cyperus rotundus on ischemia-induced brain damage and memory dysfunction in rats

    Get PDF
    Objective(s): Global cerebral ischemia-reperfusion injury causes loss of pyramidal cells in CA1 region of hippocampus. In this study, we investigated the possible neuroprotective effects of the ethanol extract of Cyperus rotundus (EECR) on a model of global transient ischemia in rat, by evaluating the pathophysiology of the hippocampal tissue and spatial memory. Materials and Methods: Treatment group (EECR, 100 mg/kg/day) was gavaged from 4 days before, to 3 days after ischemia. Morris water maze test was performed 1 week after ischemia for 4 days. Brain tissue was prepared for Nissl staining. Results: Our data showed no statistical difference between the treatment and ischemia groups in water maze task. So, treatment of ischemia with EECR cannot improve spatial learning and memory. On the contrary EECR ameliorated the CA1 pyramidal cell loss due to transient global ischemia/ reperfusion injury. Conclusion: These results suggest that EECR cannot reduce the ischemia-induced, cognitive impairments seen after transient, global cerebral ischemia but can prevent pyramidal cell loss in CA1 region of hippocampus. © 2015, Mashhad University of Medical Sciences. All rights reserved

    Anti-proliferative and apoptotic effects of aqueous extract of ziziphus jujube in human thyroid carcinoma cell lines (C643)

    Get PDF
    Background: Ziziphus jujuba, which is known as �Annab� or �Onnab� in Iran, is an effective compound against some cancer cell lines. The present study aimed to investigate the anti-mutagenic and anticancer effects of the aqueous extract of Z. jujuba on C643 human thyroid carcinoma cells. Methods: C643 cells were cultured in (Roswell Park memorial institute) RPMI 1640 medium (Sigma) supplemented with 10 fetal bovine serum (FBS), penicillin-streptomycin, and L-glutamine. After incubating the cultures at 37ºC with 5 CO2, MTT assay was used to determine the inhibitory effect of Z. jujuba on cell proliferation. Cell cycle progression was monitored by sub-G1 apoptosis assay using flow cytometry. Finally, anti-mutagenicity properties of the extract were evaluated using a standard reverse mutation assay (Ames test), which was performed with a histidine auxotroph strain of Salmonella typhimurium (TA100) and exposure to a carcinogenic substance (sodium azide). Results: The aqueous extract of Z. jujuba inhibited the growth of C643 cells in a concentration range of 0.5-2 mg/mL and exhibited cytotoxic effects on C643 cells in a concentration-dependent manner (IC50: 1.671 mg/mL). The mechanism of action was the induction of apoptosis in the cells. The results of Ames test indicated a significant difference in the anti-mutagenic effects of Z. jujuba aqueous extract and controls (distilled water and sodium azide) (1.671 mg/mL) (P < 0.01). In addition, the herbal extract prevented reverted mutations and the hindrance percent was 87.97. Conclusions: According to the results, the aqueous extract of Z. jujuba fruit exerted anti-proliferative and apoptotic effects on C643 thyroid carcinoma cell lines and may be potentially useful as an anticancer agent. © 2018, Author(s)

    Inhibition of extracellular HMGB1 attenuates hyperoxia-induced inflammatory acute lung injury

    Get PDF
    Prolonged exposure to hyperoxia results in acute lung injury (ALI), accompanied by a significant elevation in the levels of proinflammatory cytokines and leukocyte infiltration in the lungs. However, the mechanisms underlying hyperoxia-induced proinflammatory ALI remain to be elucidated. In this study, we investigated the role of the proinflammatory cytokine high mobility group box protein 1 (HMGB1) in hyperoxic inflammatory lung injury, using an adult mouse model. The exposure of C57BL/6 mice to \u3e/=99% O2 (hyperoxia) significantly increased the accumulation of HMGB1 in the bronchoalveolar lavage fluids (BALF) prior to the onset of severe inflammatory lung injury. In the airways of hyperoxic mice, HMGB1 was hyperacetylated and existed in various redox forms. Intratracheal administration of recombinant HMGB1 (rHMGB1) caused a significant increase in leukocyte infiltration into the lungs compared to animal treated with a non-specific peptide. Neutralizing anti-HMGB1 antibodies, administrated before hyperoxia significantly attenuated pulmonary edema and inflammatory responses, as indicated by decreased total protein content, wet/dry weight ratio, and numbers of leukocytes in the airways. This protection was also observed when HMGB1 inhibitors were administered after the onset of the hyperoxic exposure. The aliphatic antioxidant, ethyl pyruvate (EP), inhibited HMGB1 secretion from hyperoxic macrophages and attenuated hyperoxic lung injury. Overall, our data suggest that HMGB1 plays a critical role in mediating hyperoxic ALI through the recruitment of leukocytes into the lungs. If these results can be translated to humans, they suggest that HMGB1 inhibitors provide treatment regimens for oxidative inflammatory lung injury in patients receiving hyperoxia through mechanical ventilation

    Preliminary evaluation of a robotic apparatus for the analysis of passive glenohumeral joint kinematics

    Get PDF
    Background: The shoulder has the greatest range of motion of any joint in the human body. This is due, in part, to the complex interplay between the glenohumeral (GH) joint and the scapulothoracic (ST) articulation. Currently, our ability to study shoulder kinematics is limited, because existing models isolate the GH joint and rely on manual manipulation to create motion, and have low reproducibility. Similarly, most established techniques track shoulder motion discontinuously with limited accuracy. Methods: To overcome these problems, we have designed a novel system in which the shoulder girdle is studied intact, incorporating both GH and ST motions. In this system, highly reproducible trajectories are created using a robotic actuator to control the intact shoulder girdle. High-speed cameras are employed to track retroreflective bone markers continuously. Results: We evaluated this automated system’s capacity to reproducibly capture GH translation in intact and pathologic shoulder conditions. A pair of shoulders (left and right) were tested during forward elevation at baseline, with a winged scapula, and after creation of a full thickness supraspinatus tear. Discussion The system detected differences in GH translations as small as 0.5 mm between different conditions. For each, three consecutive trials were performed and demonstrated high reproducibility and high precision

    Three-dimensional random Voronoi tessellations: From cubic crystal lattices to Poisson point processes

    Get PDF
    We perturb the SC, BCC, and FCC crystal structures with a spatial Gaussian noise whose adimensional strength is controlled by the parameter a, and analyze the topological and metrical properties of the resulting Voronoi Tessellations (VT). The topological properties of the VT of the SC and FCC crystals are unstable with respect to the introduction of noise, because the corresponding polyhedra are geometrically degenerate, whereas the tessellation of the BCC crystal is topologically stable even against noise of small but finite intensity. For weak noise, the mean area of the perturbed BCC and FCC crystals VT increases quadratically with a. In the case of perturbed SCC crystals, there is an optimal amount of noise that minimizes the mean area of the cells. Already for a moderate noise (a>0.5), the properties of the three perturbed VT are indistinguishable, and for intense noise (a>2), results converge to the Poisson-VT limit. Notably, 2-parameter gamma distributions are an excellent model for the empirical of of all considered properties. The VT of the perturbed BCC and FCC structures are local maxima for the isoperimetric quotient, which measures the degre of sphericity of the cells, among space filling VT. In the BCC case, this suggests a weaker form of the recentluy disproved Kelvin conjecture. Due to the fluctuations of the shape of the cells, anomalous scalings with exponents >3/2 is observed between the area and the volumes of the cells, and, except for the FCC case, also for a->0. In the Poisson-VT limit, the exponent is about 1.67. As the number of faces is positively correlated with the sphericity of the cells, the anomalous scaling is heavily reduced when we perform powerlaw fits separately on cells with a specific number of faces
    corecore