895 research outputs found

    Gravitational Waves from Supermassive Black Hole Coalescence in a Hierarchical Galaxy Formation Model

    Full text link
    We investigate the expected gravitational wave emission from coalescing supermassive black hole (SMBH) binaries resulting from mergers of their host galaxies. When galaxies merge, the SMBHs in the host galaxies sink to the center of the new merged galaxy and form a binary system. We employ a semi-analytic model of galaxy and quasar formation based on the hierarchical clustering scenario to estimate the amplitude of the expected stochastic gravitational wave background owing to inspiraling SMBH binaries and bursts owing to the SMBH binary coalescence events. We find that the characteristic strain amplitude of the background radiation is hc(f)1016(f/1μHz)2/3h_c(f) \sim 10^{-16} (f/1 \mu {\rm Hz})^{-2/3} for f1μHzf \lesssim 1 \mu {\rm Hz} just below the detection limit from measurements of the pulsar timing provided that SMBHs coalesce simultaneously when host galaxies merge. The main contribution to the total strain amplitude of the background radiation comes from SMBH coalescence events at 0<z<10<z<1. We also find that a future space-based gravitational wave interferometer such as the planned \textit{Laser Interferometer Space Antenna} ({\sl LISA}) might detect intense gravitational wave bursts associated with coalescence of SMBH binaries with total mass Mtot<107MM_{\rm tot} < 10^7 M_{\odot} at z2z \gtrsim 2 at a rate 1.0yr1 \sim 1.0 {\rm yr}^{-1}. Our model predicts that burst signals with a larger amplitude hburst1015h_{\rm burst} \sim 10^{-15} correspond to coalescence events of massive SMBH binary with total mass Mtot108MM_{\rm tot} \sim 10^8 M_{\odot} at low redshift z1 z \lesssim 1 at a rate 0.1yr1 \sim 0.1 {\rm yr}^{-1} whereas those with a smaller amplitude hburst1017h_{\rm burst} \sim 10^{-17} correspond to coalescence events of less massive SMBH binary with total mass Mtot106MM_{\rm tot} \sim 10^6 M_{\odot} at high redshift z3 z \gtrsim 3.Comment: Accepted for publication in ApJ. 11 pages, 7 figure

    Magnetic phase diagram of three-dimensional diluted Ising antiferromagnet Ni0.8_{0.8}Mg0.2_{0.2}(OH)2_{2}

    Full text link
    HH-TT diagram of 3D diluted Ising antiferromagnet Nic_{c}Mg1c_{1-c}(OH)2_{2} with cc = 0.8 has been determined from measurements of SQUID DC magnetization and AC magnetic susceptibility. At HH = 0, this compound undergoes two magnetic phase transitions: an antiferromagnetic (AF) transition at the N\'{e}el temperature TNT_{N} (= 20.7 K) and a reentrant spin glass (RSG) transition at TRSGT_{RSG} (\approx 6 K). The HH-TT diagram consists of the RSG, spin glass (SG), and AF phases. These phases meet a multicritical point PmP_{m} (HmH_{m} = 42 kOe, TmT_{m} = 5.6 K). The irreversibility of susceptibility defined by δ\delta (= χFCχZFC\chi_{FC} - \chi_{ZFC}) shows a negative local minimum for 10 H\leq H \leq 35 kOe, suggesting the existence of possible glassy phase in the AF phase. A broad peak in δ\delta and χ\chi^{\prime \prime} at HH \geq 20 kOe for TN(c=0.8,H)TTN(c=1,H=0)T_{N}(c=0.8,H) \leq T \leq T_{N}(c=1,H=0) (= 26.4 K) suggests the existence of the Griffiths phase.Comment: 11 pages, 14 figures; J. Phys. Soc. Jpn. 73 (2004) No. 1 issue, in pres

    Spin-stripe density varies linearly with hole content in single-layer Bi2201 cuprate

    Full text link
    We have performed inelastic neutron scattering measurements on the single-layer cuprate Bi2+xSr2-xCuO6+y (Bi2201) with x=0.2, 0.3, 0.4 and 0.5, a doping range that spans the spin-glass (SG) to superconducting (SC) phase boundary. The doping evolution of low energy spin fluctuations was found to be characterized by a change of incommensurate modulation wave vector from the tetragonal [110] to [100]/[010] directions, while maintaining a linear relation between the incommensurability and the hole concentration, delta p. In the SC regime, the spectral weight is strongly suppressed below 4 meV. Similarities and differences in the spin correlations between Bi2201 and the prototypical single-layer system La2-xSrxCuO4 are discussed.Comment: 5 page,4 figure

    Neutron-scattering study of spin correlations in La1.94-xSrxCe0.06CuO4

    Full text link
    We performed a neutron-scattering experiment to investigate the effect of distortion of CuO2 planes on the low-energy spin correlation of La1.94-xSrxCe0.06CuO4 (LSCCO). Due to the carrier-compensation effect by co-doping of Sr and Ce, LSCCO has a smaller orthorhombic lattice distortion compared to La2-xSrxCuO4 (LSCO) with comparable hole concentration p. A clear gap with the edge-energy of 6~7 meV was observed in the energy spectrum of local dynamical susceptibility c"(w) for both x=0.18 (p~0.14) and x=0.24 (p~0.20) samples as observed for optimally-doped LSCO (x=0.15~0.18). For the x=0.14 (p~0.10) sample, in addition to the gap-like structure in c"(w) we observed a low-energy component within the gap which develops below 2~3meV with decreasing the energy. The low-energy component possibly coincides with the static magnetic correlation observed in this sample. These results are discussed from a view point of relationship between the stability of low-energy spin fluctuations and the distortion of CuO2 planes.Comment: 4 pages, 3 figures, proceeding for SNS2007 conferenc

    Hidden itinerant-spin phase in heavily-overdoped La2-xSrxCuO4 revealed by dilute Fe doping: A combined neutron scattering and angle-resolved photoemission study

    Full text link
    We demonstrated experimentally a direct way to probe a hidden propensity to the formation of spin density wave (SDW) in a non-magnetic metal with strong Fermi surface nesting. Substituting Fe for a tiny amount of Cu (1%) induced an incommensurate magnetic order below 20 K in heavily-overdoped La2-xSrxCuO4 (LSCO). Elastic neutron scattering suggested that this order cannot be ascribed to the localized spins on Cu or doped Fe. Angle-resolved photoemission spectroscopy (ARPES), combined with numerical calculations, revealed a strong Fermi surface nesting inherent in the pristine LSCO that likely drives this order. The heavily-overdoped Fe-doped LSCO thus represents the first plausible example of the long-sought "itinerant-spin extreme" of cuprates, where the spins of itinerant doped holes define the magnetic ordering ground state. This finding complements the current picture of cuprate spin physics that highlights the predominant role of localized spins at lower dopings. The demonstrated set of methods could potentially apply to studying hidden density-wave instabilities of other "nested" materials on the verge of density wave ordering.Comment: Abstract and discussion revised; to appear in Phys. Rev. Let

    Investigation of the spin-glass regime between the antiferromagnetic and superconducting phases in Fe1+y_{1+y}Sex_xTe1x_{1-x}

    Get PDF
    Using bulk magnetization along with elastic and inelastic neutron scattering techniques, we have investigated the phase diagram of Fe1+y_{1+y}Sex_{x}Te1x_{1-x} and the nature of magnetic correlations in three nonsuperconducting samples of Fe1.01_{1.01}Se0.1_{0.1}Te0.9_{0.9}, Fe1.01_{1.01}Se0.15_{0.15}Te0.85_{0.85} and Fe1.02_{1.02}Se0.3_{0.3}Te0.7_{0.7}. A cusp and hysteresis in the temperature dependence of the magnetization for the x=0.15x=0.15 and 0.3 samples indicates spin-glass (SG) ordering below Tsg=23T_{\rm sg} = 23K. Neutron scattering measurements indicate that the spin-glass behavior is associated with short-range spin density wave (SDW) ordering characterized by a static component and a low-energy dynamic component with a characteristic incommensurate wave vector of Qm=(0.46,0,0.50){\bf Q}_m = (0.46, 0, 0.50) and an anisotropy gap of \sim 2.5 meV. Our high Q{\bf Q}-resolution data also show that the systems undergo a glassy structural distortion that coincides with the short-range SDW order

    Magnetic Structure of Nano-Graphite Moebius Ribbon

    Full text link
    We consider the electronic and magnetic properties of nanographite ribbon with zigzag edges under the periodic or Moebius boundary conditions. The zigzag nano-graphite ribbons possess edge localized states at the Fermi level which cause a ferrimagnetic spin polarization localized at the edge sites even in the very weak Coulomb interaction. The imposition of the Moebius boundary condition makes the system non-AB-bipartite lattice, and depress the spin polarization, resulting in the formation of a magnetic domain wall. The width of the magnetic domain depends on the Coulomb interaction and narrows with increasing U/t.Comment: 4 pages; 6 figures; published at J. Phys. Soc. Jpn. Vol. 72 No. 5 pp. 998-1001 (2003

    Excitation of stellar oscillations by gravitational waves: hydrodynamic model and numerical results for the Sun

    Full text link
    Starting from a general relativistic framework a hydrodynamic formalism is derived that yields the mean-square amplitudes and rms surface velocities of normal modes of non-relativistic stars excited by arbitrary gravitational wave (GW) radiation. In particular, stationary GW fields are considered and the resulting formulae are evaluated for two general types of GW radiation: radiation from a particular astrophysical source (e.g., a binary system) and a stochastic background of gravitational waves (SBGW). Expected sources and signal strengths for both types of GW radiation are reviewed and discussed. Numerical results for the Sun show that low-order quadrupolar g modes are excited more strongly than p modes by orders of magnitude. Maximal rms surface velocities in the case of excitation by astrophysical sources are found to be v {\le} 10^(-8) mm/s, assuming GW strain amplitudes of h {\le} 10^(-20). It is shown that current models for an SBGW produced by cosmic strings, with Omega_GW ~ 10^(-8)-10^(-5) in the frequency range of solar g modes, are able to produce maximal solar g-mode rms surface velocities of 10^(-5)-10^(-3) mm/s. This result lies close to or within the amplitude range of 10^(-3)-1 mm/s expected from excitation by turbulent convection, which is currently considered to be responsible for stellar g-mode excitation. It is concluded that studying g-mode observations of stars other than the Sun, in which excitation by GWs could be even more effective due to different stellar structures, might provide a new method to either detect GWs or to deduce a significant direct upper limit on an SBGW at intermediate frequencies between the pulsar bound and the bounds from interferometric detectors on Earth.Comment: 20 pages, 5 figure

    Numerical Galaxy Catalog -I. A Semi-analytic Model of Galaxy Formation with N-body simulations

    Full text link
    We construct the Numerical Galaxy Catalog (ν\nuGC), based on a semi-analytic model of galaxy formation combined with high-resolution N-body simulations in a Λ\Lambda-dominated flat cold dark matter (Λ\LambdaCDM) cosmological model. The model includes several essential ingredients for galaxy formation, such as merging histories of dark halos directly taken from N-body simulations, radiative gas cooling, star formation, heating by supernova explosions (supernova feedback), mergers of galaxies, population synthesis, and extinction by internal dust and intervening HI clouds. As the first paper in a series using this model, we focus on basic photometric, structural and kinematical properties of galaxies at present and high redshifts. Two sets of model parameters are examined, strong and weak supernova feedback models, which are in good agreement with observational luminosity functions of local galaxies in a range of observational uncertainty. Both models agree well with many observations such as cold gas mass-to-stellar luminosity ratios of spiral galaxies, HI mass functions, galaxy sizes, faint galaxy number counts and photometric redshift distributions in optical pass-bands, isophotal angular sizes, and cosmic star formation rates. In particular, the strong supernova feedback model is in much better agreement with near-infrared (K'-band) faint galaxy number counts and redshift distribution than the weak feedback model and our previous semi-analytic models based on the extended Press-Schechter formalism. (Abridged)Comment: 26 pages including 27 figures, accepted for publication in ApJ, full-resolution version is available at http://grape.astron.s.u-tokyo.ac.jp/~yahagi/nugc
    corecore