7,335 research outputs found
Interrelated structure of high altitude atmospheric profiles
A preliminary development of a mathematical model to compute probabilities of thermodynamic profiles is presented. The model assumes an exponential expression for pressure and utilizes the hydrostatic law and equation of state in the determination of density and temperature. It is shown that each thermodynamic variable can be factored into the produce of steady state and perturbation functions. The steady state functions have profiles similar to those of the 1962 standard atmosphere while the perturbation functions oscillate about 1. Limitations of the model and recommendations for future work are presented
Effect of homogenisation conditions on recrystallisation in the Al-Mg-Mn alloy AA5454
The purpose of the present work is to understand the microstructure development and, particularly, to control the progress of recrystallisation in hot strip in the Al-Mg-Mn alloy AA 5454, which is typically used for the manufacture of structural automotive components. The chemical composition, together with the thermomechanical processing history of this material, has a strong influence on the microstructure of the product and the resulting properties as it is supplied to the customer. Electrical conductivity measurements, thermal analysis and electron microscopy have been carried out to characterise the evolution of precipitation state at various stages in the processing route. The conditions of the homogenisation heat treatment have been varied, and the effect on subsequent recrystallisation after hot rolling has been evaluated in both the as cast and rough rolled condition by optical microscopy techniques. Results indicate that the conditions of homogenisation heat treatment and roughing rolling are critical for the generation of a suitable recrystallised microstructure in AA 5454 hot strip. A new two stage homogenisation practice has been developed to expedite post-rolling recrystallisation in this alloy
Cold inelastic collisions between lithium and cesium in a two-species magneto-optical trap
We investigate collisional properties of lithium and cesium which are
simultaneously confined in a combined magneto-optical trap. Trap-loss
collisions between the two species are comprehensively studied. Different
inelastic collision channels are identified, and inter-species rate
coefficients as well as cross sections are determined. It is found that loss
rates are independent of the optical excitation of Li, as a consequence of the
repulsive Li-Cs interaction. Li and Cs loss by inelastic inter-species
collisions can completely be attributed to processes involving optically
excited cesium (fine-structure changing collisions and radiative escape). By
lowering the trap depth for Li, an additional loss channel of Li is observed
which results from ground-state Li-Cs collisions changing the hyperfine state
of cesium.Comment: submitted to Euro. Phys. J. D, special issue on Laser Cooling and
Trappin
Very long storage times and evaporative cooling of cesium atoms in a quasi-electrostatic dipole trap
We have trapped cesium atoms over many minutes in the focus of a CO-laser
beam employing an extremely simple laser system. Collisional properties of the
unpolarized atoms in their electronic ground state are investigated. Inelastic
binary collisions changing the hyperfine state lead to trap loss which is
quantitatively analyzed. Elastic collisions result in evaporative cooling of
the trapped gas from 25 K to 10 K over a time scale of about 150 s.Comment: 5 pages, 3 figure
Quaternion algebras with the same subfields
G. Prasad and A. Rapinchuk asked if two quaternion division F -algebras that
have the same subfields are necessarily isomorphic. The answer is known to be
"no" for some very large fields. We prove that the answer is "yes" if F is an
extension of a global field K so that F /K is unirational and has zero
unramified Brauer group. We also prove a similar result for Pfister forms and
give an application to tractable fields
GBM heterogeneity as a function of variable epidermal growth factor receptor variant III activity.
Abnormal activation of the epidermal growth factor receptor (EGFR) due to a deletion of exons 2-7 of EGFR (EGFRvIII) is a common alteration in glioblastoma (GBM). While this alteration can drive gliomagenesis, tumors harboring EGFRvIII are heterogeneous. To investigate the role for EGFRvIII activation in tumor phenotype we used a neural progenitor cell-based murine model of GBM driven by EGFR signaling and generated tumor progenitor cells with high and low EGFRvIII activation, pEGFRHi and pEGFRLo. In vivo, ex vivo, and in vitro studies suggested a direct association between EGFRvIII activity and increased tumor cell proliferation, decreased tumor cell adhesion to the extracellular matrix, and altered progenitor cell phenotype. Time-lapse confocal imaging of tumor cells in brain slice cultures demonstrated blood vessel co-option by tumor cells and highlighted differences in invasive pattern. Inhibition of EGFR signaling in pEGFRHi promoted cell differentiation and increased cell-matrix adhesion. Conversely, increased EGFRvIII activation in pEGFRLo reduced cell-matrix adhesion. Our study using a murine model for GBM driven by a single genetic driver, suggests differences in EGFR activation contribute to tumor heterogeneity and aggressiveness
Strong anisotropy in surface kinetic roughening: analysis and experiments
We report an experimental assessment of surface kinetic roughening properties
that are anisotropic in space. Working for two specific instances of silicon
surfaces irradiated by ion-beam sputtering under diverse conditions (with and
without concurrent metallic impurity codeposition), we verify the predictions
and consistency of a recently proposed scaling Ansatz for surface observables
like the two-dimensional (2D) height Power Spectral Density (PSD). In contrast
with other formulations, this Ansatz is naturally tailored to the study of
two-dimensional surfaces, and allows to readily explore the implications of
anisotropic scaling for other observables, such as real-space correlation
functions and PSD functions for 1D profiles of the surface. Our results confirm
that there are indeed actual experimental systems whose kinetic roughening is
strongly anisotropic, as consistently described by this scaling analysis. In
the light of our work, some types of experimental measurements are seen to be
more affected by issues like finite space resolution effects, etc. that may
hinder a clear-cut assessment of strongly anisotropic scaling in the present
and other practical contexts
Factorization Breaking in Dijet Photoproduction with a Leading Neutron
The production of dijets with a leading neutron in ep-interactions at HERA is
calculated in leading order and next-to-leading order of perturbative QCD using
a pion-exchange model. Differential cross sections for deep-inelastic
scattering (DIS) and photoproduction are presented as a function of several
kinematic variables. By comparing the theoretical predictions for DIS dijets to
recent H1 data, the pion flux factor together with the parton distribution
functions of the pion is determined. The dijet cross sections in
photoproduction show factorization breaking if compared to the H1
photoproduction data. The suppression factor is S = 0.48 (0.64) for resolved
(global) suppression.Comment: 16 pages, 5 figure
- …
