451 research outputs found

    Agriculture's Role in Greenhouse Gas Mitigation

    Get PDF
    Examines technical, economic, and policy trends. Explores efforts to encourage farmers to adopt new agricultural practices that reduce agricultural greenhouse gas emissions. Reviews biofuel options, and related policy implications

    Carbon flow in plant microbial associations

    Get PDF
    Includes bibliographical references (page 474).Measurement of the distribution of the photosynthesis product in the symbiotic association of a legume, a mycorrhizal fungus, and nitrogen-fixing bacteria showed that the fungus incorporated 1 percent of the photosynthesis product and respired 3 percent. The nodules of a 5-week-old plant utilized 7 to 12 percent of the photosynthesis product. The legume compensated in part for the needs of its microbial partners through increased rates of photosynthesis.Publisher version: http://www.jstor.org/stable/1686536

    Metabolism of labeled organic nitrogen in soil: regulation by inorganic nitrogen

    Get PDF
    Includes bibliographical references (page 773).Regulation of organic N metabolism by inorganic N availability was investigated in short-term laboratory incubations of soil. A 14C-, 15N-labeled organic N substrate was produced by growing Pseudomonas stutzeri in labeled media and isolating a cytoplasmic fraction. This was added to soils that had been preincubated with glucose or glucose plus NH+4 to induce conditions of N deficiency or sufficiency. Regulation by inorganic N was indicated by stimulated proteolytic enzyme activity and greater initial rates of cytoplasmic 14C mineralization in N deficient soils. However, effects of N deficiency on 14C mineralization persisted for no more than 24 h. Preinduced N deficiency significantly decreased the extent of 15N mineralized from cytoplasmic N. Mineralization of 14C from leucine added to soil was similarly affected by N availability, yet 14C-glutamate mineralization was apparently unaffected. In another experiment labeled cytoplasm was added simultaneously with or without a larger quantity of glucose. The glucose caused virtually complete assimilation of 15N but had no effect on apparent assimilation of 14C. Thus, there was no relationship between 15N assimilation and 14C assimilation, suggesting that the C and N contained in organic N are processed separately by soil microbes. Inorganic N availability may have short-term effects on metabolism of C in organic N but long-lasting effects appear to be minimal

    Influence of plant residues on denitrification rates in conventional and zero tilled soils, The

    Get PDF
    Includes bibliographical references (page 794).A field study was conducted with treatments consisting of a factorial combination of N (0 or 100 kg N ha−1 as (NH4)2SO4, straw (0 or 3000 kg ha−1), and two tillage treatments. Ground straw was mixed with the plow layer of soil in the conventional till (CT) plots and chopped straw was spread over the surface of the zero till (ZT) plots. Wheat (Triticum aestivum L.) was grown as the test crop. Gaseous losses of N were measured using the acetylene inhibition-soil core technique and compared with loss estimates obtained from the imbalance in the N budget of 15N-treated microplots located within the larger yield plots. When adequate inorganic N was present, the incorporation of straw in CT soil or the application of straw on the surface of ZT soil approximately doubled the accumulative gaseous N losses. The straw apparently increased the supply of energy material available to denitrifying organisms, and also increased surface soil moisture content (particularly during the month of June). This further stimulated denitrification in ZT soil. Unaccounted 15N on the fertilizer N balance studies agreed closely with cumulative N losses using the acetylene inhibition technique

    Changes in ecosystem carbon following afforestation of native sand prairie

    Get PDF
    Includes bibliographical references (pages 1622-1624).Determining the dynamics of carbon (C) as a function of vegetation and residue inputs is important for predicting changes in ecosystem functions and the global C cycle. Litter and soil samples were analyzed from plantations of eastern red cedar (Juniperous virginiana) and ponderosa pine (Pinus ponderosa) and native prairie at the Nebraska National Forest to evaluate the impact of different types of land management on soil C contents and turnover rates. Total soil C to a depth of 1 m was greatest in the cedar stands. Pine ecosystems stored more C in the tree biomass and litter but lost more native prairie C from the soil. The soil 13C content showed 82% of the original, and prairie C remained under cedars compared with ∌45% under pine. Soil cation contents were greatest overall in cedar soils and lowest in pine. The C content in cedar soils was strongly related to Ca content. Differences in microbial community fatty acid profiles were related to vegetation type, and nutrients explained ∌60% of the variation in profiles. Our research indicates that changes in soil C and nutrient content following conversion from prairie to forest are dependent on tree species planted, characteristics of the plant litter, and cation cycling in the plant–soil system

    Adhesion, Spreading and Fragmentation of Human Megakaryocytes Exposed to Subendothelial Extracellular Matrix: A Scanning Electron Microscopy Study

    Get PDF
    Platelet agonists and subendothelial extra-cellular matrix (ECM) induce morphological and biochemical changes in animal megakaryocytes, reminiscent of the response of platelets to the same substances. We have examined the behavior of human megakaryocytes exposed for up to 36 hours to the ECM produced by cultured bovine corneal endothelial cells. By phase contrast and scanning electron microscopy these megakaryocytes demonstrated non-reversible adherence and flattening with formation of long filopodia, thus confirming that human megakaryocytes acquire platelet functional capacities. In addition, megakaryocyte fragmentation into prospective platelets was apparently induced by the ECM. Up to 50% of the adherent megakaryocytes underwent spontaneous fragmentation into small particles which individually reacted like platelets on the ECM. The interaction of the megakaryocytes with the ECM was specific since no adherence, flattening or fragmentation occured upon incubation of the megakaryocytes on regular tissue culture plastic or glutaraldehyde fixed ECM. Thus we have demonstrated platelet like behaviour of human megakaryocytes in response to this physiological basement membrane and a possible role of the subendothelium in platelet production which may occur in vivo as megakaryocytes cross the sinusoid walls and enter the blood stream

    Soil resources, microbial activity, and primary production across an agricultural ecosystem

    Get PDF
    Includes bibliographical references (pages 169-170).The degree to which soil resource availability is linked to patterns of microbial activity and plant productivity within ecosystems has important consequences for our understanding of how ecosystems are structured and for the management of systems for agricultural production. We studied this linkage in a 48-ha site in southwest Michigan, USA, that had been cultivated and planted to row crops for decades. Prior to seeding the site to genetically identical soybean plants (Glycine max) in early spring, we removed soil samples from ≈600 locations; plant biomass was harvested from these same locations later in the season. Soil samples were analyzed for physical properties (texture, bulk density), chemical properties (moisture, pH, total C, total N, inorganic N), and biological attributes (microbial biomass, microbial population size, respiration potential, and nitrification and N-mineralization potentials). Plant analyses included biomass and C and N contents. Soil resource variability across this long-cultivated site was remarkably high, as was variability in microbial activity and primary productivity. In almost all cases variability exhibited a strong spatially explicit structure: for most properties and processes > 50% of sample variance was spatially dependent at a scale of 5–60 m. Exceptions included microtopography, soil pH, and inorganic P, which were spatially dependent across the entire 1–1200 m range of separation distances examined in this study, and the culturable-bacteria population, which was not spatially autocorrelated at any scale examined. Both topographic relief and soil pH exhibited strongly nested structures, with autocorrelation occurring within two (topography) or more (pH) distinct ranges. Multiple regression analysis showed surprisingly little correlation between biological processes (soybean productivity, soil N turnover, soil respiration), and static soil properties. The best predictor of soybean biomass at late reproductive stages (r2 = 0.42) was a combination of nitrate N, bulk density, inorganic P, N-mineralization rates, and pH. Overall, results suggest a remarkable degree of spatial variability for a pedogenically homogeneous site that has been plowed and cropped mostly as a single field for > 100 yr. Such variability is likely to be generic to most ecosystems and should be carefully evaluated when making inferences about ecological relationships in these systems and when considering alternative sampling and management strategies

    The soil and plant biogeochemistry sampling design for The National Ecological Observatory Network

    Get PDF
    Human impacts on biogeochemical cycles are evident around the world, from changes to forest structure and function due to atmospheric deposition, to eutrophication of surface waters from agricultural effluent, and increasing concentrations of carbon dioxide (CO2) in the atmosphere. The National Ecological Observatory Network (NEON) will contribute to understanding human effects on biogeochemical cycles from local to continental scales. The broad NEON biogeochemistry measurement design focuses on measuring atmospheric deposition of reactive mineral compounds and CO2 fluxes, ecosystem carbon (C) and nutrient stocks, and surface water chemistry across 20 eco‐climatic domains within the United States for 30 yr. Herein, we present the rationale and plan for the ground‐based measurements of C and nutrients in soils and plants based on overarching or “high‐level” requirements agreed upon by the National Science Foundation and NEON. The resulting design incorporates early recommendations by expert review teams, as well as recent input from the larger natural sciences community that went into the formation and interpretation of the requirements, respectively. NEON\u27s efforts will focus on a suite of data streams that will enable end‐users to study and predict changes to biogeochemical cycling and transfers within and across air, land, and water systems at regional to continental scales. At each NEON site, there will be an initial, one‐time effort to survey soil properties to 1 m (including soil texture, bulk density, pH, baseline chemistry) and vegetation community structure and diversity. A sampling program will follow, focused on capturing long‐term trends in soil C, nitrogen (N), and sulfur stocks, isotopic composition (of C and N), soil N transformation rates, phosphorus pools, and plant tissue chemistry and isotopic composition (of C and N). To this end, NEON will conduct extensive measurements of soils and plants within stratified random plots distributed across each site. The resulting data will be a new resource for members of the scientific community interested in addressing questions about long‐term changes in continental‐scale biogeochemical cycles, and is predicted to inspire further process‐based research

    Lack of influence of the COX inhibitors metamizol and diclofenac on platelet GPIIb/IIIa and P-selectin expression in vitro

    Get PDF
    BACKGROUND: The effect of non-steroidal anti-inflammatory drugs (NSAIDs) for reduced platelet aggregation and thromboxane A(2 )synthesis has been well documented. However, the influence on platelet function is not fully explained. Aim of this study was to examine the influence of the COX-1 inhibiting NSAIDs, diclofenac and metamizol on platelet activation and leukocyte-platelet complexes, in vitro. Surface expression of GPIIb/IIIa and P-selectin on platelets, and the percentage of platelet-leukocyte complexes were investigated. METHODS: Whole blood was incubated with three different concentrations of diclofenac and metamizol for 5 and 30 minutes, followed by activation with TRAP-6 and ADP. Rates of GPIIb/IIIa and P-selectin expression, and the percentage of platelet-leukocyte complexes were analyzed by a flow-cytometric assay. RESULTS: There were no significant differences in the expression of GPIIb/IIIa and P-selectin, and in the formation of platelet-leukocyte complexes after activation with ADP and TRAP-6, regarding both the time of incubation and the concentrations of diclofenac and metamizol. CONCLUSIONS: Accordingly, the inhibitory effect of diclofenac and metamizol on platelet aggregation is not related to a reduced surface expression of P-selectin and GPIIb/IIIa on platelets

    Extracellular Matrix Aggregates from Differentiating Embryoid Bodies as a Scaffold to Support ESC Proliferation and Differentiation

    Get PDF
    Embryonic stem cells (ESCs) have emerged as potential cell sources for tissue engineering and regeneration owing to its virtually unlimited replicative capacity and the potential to differentiate into a variety of cell types. Current differentiation strategies primarily involve various growth factor/inducer/repressor concoctions with less emphasis on the substrate. Developing biomaterials to promote stem cell proliferation and differentiation could aid in the realization of this goal. Extracellular matrix (ECM) components are important physiological regulators, and can provide cues to direct ESC expansion and differentiation. ECM undergoes constant remodeling with surrounding cells to accommodate specific developmental event. In this study, using ESC derived aggregates called embryoid bodies (EB) as a model, we characterized the biological nature of ECM in EB after exposure to different treatments: spontaneously differentiated and retinoic acid treated (denoted as SPT and RA, respectively). Next, we extracted this treatment-specific ECM by detergent decellularization methods (Triton X-100, DOC and SDS are compared). The resulting EB ECM scaffolds were seeded with undifferentiated ESCs using a novel cell seeding strategy, and the behavior of ESCs was studied. Our results showed that the optimized protocol efficiently removes cells while retaining crucial ECM and biochemical components. Decellularized ECM from SPT EB gave rise to a more favorable microenvironment for promoting ESC attachment, proliferation, and early differentiation, compared to native EB and decellularized ECM from RA EB. These findings suggest that various treatment conditions allow the formulation of unique ESC-ECM derived scaffolds to enhance ESC bioactivities, including proliferation and differentiation for tissue regeneration applications. © 2013 Goh et al
    • 

    corecore