126 research outputs found

    Influenza interaction with cocirculating pathogens, and its impact on surveillance, pathogenesis and epidemic profile: a key role for mathematical modeling

    Get PDF
    ABSTRACT Evidence is mounting that influenza virus, a major contributor to the global disease burden, interacts with other pathogens infecting the human respiratory tract. Taking into account interactions with other pathogens may be critical to determining the real influenza burden and the full impact of public health policies targeting influenza. That necessity is particularly true for mathematical modeling studies, which have become critical in public health decision-making, despite their usually focusing on lone influenza virus acquisition and infection, thereby making broad oversimplifications regarding pathogen ecology. Herein, we review evidence of influenza virus interaction with bacteria and viruses, and the modeling studies that incorporated some of these. Despite the many studies examining possible associations between influenza and Streptococcus pneumoniae, Staphylococcus aureus, Haemophilus influenzae, Neisseria meningitides , respiratory syncytial virus, human rhinoviruses, human parainfluenza viruses, etc., very few mathematical models have integrated other pathogens alongside influenza. A notable exception is the recent modeling of the pneumococcus-influenza interaction, which highlighted potential influenza-related increased pneumococcal transmission and pathogenicity. That example demonstrates the power of dynamic modeling as an approach to test biological hypotheses concerning interaction mechanisms and estimate the strength of those interactions. We explore how different interference mechanisms may lead to unexpected incidence trends and misinterpretations. Using simple transmission models, we illustrate how existing interactions might impact public health surveillance systems and demonstrate that the development of multipathogen models is essential to assess the true public health burden of influenza, and help improve planning and evaluation of control measures. Finally, we identify the public health needs, surveillance, modeling and biological challenges, and propose avenues of research for the coming years. Author Summary Influenza is a major pathogen responsible for important morbidity and mortality burdens worldwide. Mathematical models of influenza virus acquisition have been critical to understanding its epidemiology and planning public health strategies of infection control. It is increasingly clear that microbes do not act in isolation but potentially interact within the host. Hence, studying influenza alone may lead to masking effects or misunderstanding information on its transmission and severity. Herein, we review the literature on bacterial and viral species that interact with the influenza virus, interaction mechanisms, and mathematical modeling studies integrating interactions. We report evidence that, beyond the classic secondary bacterial infections, many pathogenic bacteria and viruses probably interact with influenza. Public health relevance of pathogen interactions is detailed, showing how potential misreading or a narrow outlook might lead to mistaken public health decisionmaking. We describe the role of mechanistic transmission models in investigating this complex system and obtaining insight into interactions between influenza and other pathogens. Finally, we highlight benefits and challenges in modeling, and speculate on new opportunities made possible by taking a broader view: including basic science, clinical relevance and public health

    Competition between RSV and influenza: Limits of modelling inference from surveillance data.

    Get PDF
    Respiratory Syncytial Virus (RSV) and Influenza cause a large burden of disease. Evidence of their interaction via temporary cross-protection implies that prevention of one could inadvertently lead to an increase in the burden of the other. However, evidence for the public health impact of such interaction is sparse and largely derives from ecological analyses of peak shifts in surveillance data. To test the robustness of estimates of interaction parameters between RSV and Influenza from surveillance data we conducted a simulation and back-inference study. We developed a two-pathogen interaction model, parameterised to simulate RSV and Influenza epidemiology in the UK. Using the infection model in combination with a surveillance-like stochastic observation process we generated a range of possible RSV and Influenza trajectories and then used Markov Chain Monte Carlo (MCMC) methods to back-infer parameters including those describing competition. We find that in most scenarios both the strength and duration of RSV and Influenza interaction could be estimated from the simulated surveillance data reasonably well. However, the robustness of inference declined towards the extremes of the plausible parameter ranges, with misleading results. It was for instance not possible to tell the difference between low/moderate interaction and no interaction. In conclusion, our results illustrate that in a plausible parameter range, the strength of RSV and Influenza interaction can be estimated from a single season of high-quality surveillance data but also highlights the importance to test parameter identifiability a priori in such situations

    The impact of Coronavirus disease 2019 (COVID-19) on health systems and household resources in Africa and South Asia

    Get PDF
    AbstractBackgroundCoronavirus disease 2019 (COVID-19) epidemics strain health systems and households. Health systems in Africa and South Asia may be particularly at risk due to potential high prevalence of risk factors for severe disease, large household sizes and limited healthcare capacity.MethodsWe investigated the impact of an unmitigated COVID-19 epidemic on health system resources and costs, and household costs, in Karachi, Delhi, Nairobi, Addis Ababa and Johannesburg. We adapted a dynamic model of SARS-CoV-2 transmission and disease to capture country-specific demography and contact patterns. The epidemiological model was then integrated into an economic framework that captured city-specific health systems and household resource use.FindingsThe cities severely lack intensive care beds, healthcare workers and financial resources to meet demand during an unmitigated COVID-19 epidemic. A highly mitigated COVID-19 epidemic, under optimistic assumptions, may avoid overwhelming hospital bed capacity in some cities, but not critical care capacity.InterpretationViable mitigation strategies encompassing a mix of responses need to be established to expand healthcare capacity, reduce peak demand for healthcare resources, minimise progression to critical care and shield those at greatest risk of severe disease.FundingBill &amp; Melinda Gates Foundation, European Commission, National Institute for Health Research, Department for International Development, Wellcome Trust, Royal Society, Research Councils UK.Research in contextEvidence before this studyWe conducted a PubMed search on May 5, 2020, with no language restrictions, for studies published since inception, combining the terms (“cost” OR “economic”) AND “covid”. Our search yielded 331 articles, only two of which reported estimates of health system costs of COVID-19. The first study estimated resource use and medical costs for COVID-19 in the United States using a static model of COVID 19. The second study estimated the costs of polymerase chain reaction tests in the United States. We found no studies examining the economic implications of COVID-19 in low- or middle-income settings.Added value of this studyThis is the first study to use locally collected data in five cities (Karachi, Delhi, Nairobi, Addis Ababa and Johannesburg) to project the healthcare resource and health economic implications of an unmitigated COVID-19 epidemic. Besides the use of local data, our study moves beyond existing work to (i) consider the capacity of health systems in key cities to cope with this demand, (ii) consider healthcare staff resources needed, since these fall short of demand by greater margins than hospital beds, and (iii) consider economic costs to health services and households.Implications of all the evidenceDemand for ICU beds and healthcare workers will exceed current capacity by orders of magnitude, but the capacity gap for general hospital beds is narrower. With optimistic assumptions about disease severity, the gap between demand and capacity for general hospital beds can be closed in some, but not all the cities. Efforts to bridge the economic burden of disease to households are needed.</jats:sec

    The potential cost-effectiveness of next generation influenza vaccines in England and Wales: a modelling analysis

    Get PDF
    Next generation influenza vaccines are in development and have the potential for widespread health and economic benefits. Determining the potential health and economic impact for these vaccines is needed to drive investment in bringing these vaccines to the market, and to inform which groups public health policies on influenza vaccination should target. We used a mathematical modelling approach to estimate the epidemiological impact and cost-effectiveness of next generation influenza vaccines in England and Wales. We used data from an existing fitted model, and evaluated new vaccines with different characteristics ranging from improved vaccines with increased efficacy duration and breadth of protection, to universal vaccines, defined in line with the World Health Organisation (WHO) Preferred Product Characteristics (PPC). We calculated the cost effectiveness of new vaccines in comparison to the current seasonal vaccination programme. We calculated and compared the Incremental Cost-Effectiveness Ratio and Incremental Net Monetary Benefit for each new vaccine type. All analysis was conducted in R. We show that next generation influenza vaccines may result in a 21% to 77% reduction in influenza infections, dependent on vaccine characteristics. Our economic modelling shows that using any of these next generation vaccines at 2019 coverage levels would be highly cost-effective at a willingness to pay threshold of ÂŁ20,000 for a range of vaccine prices. The vaccine threshold price for the best next generation vaccines in ÂŁ-2019 is ÂŁ230 (95%CrI ÂŁ192 - ÂŁ269) per dose, but even minimally-improved influenza vaccines could be priced at ÂŁ18 (95%CrI ÂŁ16 - ÂŁ21) per dose and still remain cost-effective. This evaluation demonstrates the promise of next generation influenza vaccines for impact on influenza epidemics, and likely cost-effectiveness profiles. We have provided evidence towards a full value of vaccines assessment which bolsters the investment case for development and roll-out of next-generation influenza vaccines

    Integrating economic and health evidence to inform Covid-19 policy in low- and middle- income countries

    Get PDF
    This is the final version. Available on open access from F1000 Research via the DOI in this recordData availability: No data are associated with this article.Covid-19 requires policy makers to consider evidence on both population health and economic welfare. Over the last two decades, the field of health economics has developed a range of analytical approaches and contributed to the institutionalisation of processes to employ economic evidence in health policy. We present a discussion outlining how these approaches and processes need to be applied more widely to inform Covid-19 policy; highlighting where they may need to be adapted conceptually and methodologically, and providing examples of work to date. We focus on the evidential and policy needs of low- and middle-income countries; where there is an urgent need for evidence to navigate the policy trade-offs between health and economic well-being posed by the Covid-19 pandemic.Wellcome Trus

    Population disruption: observational study of changes in the population distribution of the UK during the COVID-19 pandemic.

    Get PDF
    BACKGROUND: Mobility data have demonstrated major changes in human movement patterns in response to COVID-19 and associated interventions in many countries. This involves sub-national redistribution, short-term relocations, and international migration. Aggregated mobile phone location data combined with small-area census population data allow changes in the population distribution of the UK to be quantified with high spatial and temporal granularity. METHODS: In this paper, we combine detailed data from Facebook, measuring the location of approximately 6 million daily active Facebook users in 5km2 tiles in the UK with census-derived population estimates to measure population mobility and redistribution. We provide time-varying population estimates and assess spatial population changes with respect to population density and four key reference dates in 2020 (first UK lockdown, end of term, beginning of term, Christmas). RESULTS: We show how population estimates derived from Facebook data vary compared to mid-2020 small area population estimates by UK national statistics agencies. We also estimate that between March 2020 and March 2021, the total population of the UK declined and we identify important spatial variations in this population change, showing that low-density areas have experienced lower population decreases than urban areas. We estimate that, for the top 10% highest population tiles, the population has decreased by 6.6%. Finally, we provide evidence that geographic redistributions of population within the UK coincide with dates of non-pharmaceutical interventions including lockdowns and movement restrictions, as well as seasonal patterns of migration around holiday dates. CONCLUSIONS: The methods used in this study reveal significant changes in population distribution at high spatial and temporal resolutions that have not previously been quantified by available demographic surveys in the UK. We found early indicators of potential longer-term changes in the population distribution of the UK although it is not clear if these changes will persist after the COVID-19 pandemic

    Endostatin expression in a pancreatic cell line is modulated by a TNFα-dependent elastase

    Get PDF
    Endostatin, an inhibitor of angiogenesis, is a 20 kDa fragment of the basement membrane protein, collagen XVIII. The formation of endostatin relies upon the action of proteases on collagen XVIII. TNFα, produced by activated macrophages, is a multifunctional proinflammatory cytokine with known effects on endothelial function. We postulated that TNFα may modulate the activities of proteases and thus regulate endostatin formation in pancreatic cells. Collagen XVIII/endostatin mRNA was expressed in one pancreatic cell line, SUIT-2, but not in BxPc-3. The 20 kDa endostatin was found in the cell-conditioned medium of SUIT-2 cells. Precursor forms only were found in the cells. Exogenous endostatin was degraded by cellular lysates of SUIT-2 cells. Elastase activity was found in cell extracts but not the cell-conditioned media of SUIT-2 cells. Incubation of SUIT-2 cells with TNFα increased intracellular elastase activity and also increased secretion of endostatin into the medium. We conclude that endostatin is released by SUIT-2 cells and that increases in intracellular elastase, induced by TNFα, are correlated with increased secretion. Endostatin is however susceptible to degradation by intracellular proteases and if tissue injury accompanies inflammation, endostatin may be degraded, allowing angiogenesis to occur

    Potential health and economic impact of paediatric vaccination using next-generation influenza vaccines in Kenya: a modelling study

    Get PDF
    BACKGROUND: Influenza is a major year-round cause of respiratory illness in Kenya, particularly in children under 5. Current influenza vaccines result in short-term, strain-specific immunity and were found in a previous study not to be cost-effective in Kenya. However, next-generation vaccines are in development that may have a greater impact and cost-effectiveness profile. METHODS: We expanded a model previously used to evaluate the cost-effectiveness of seasonal influenza vaccines in Kenya to include next-generation vaccines by allowing for enhanced vaccine characteristics and multi-annual immunity. We specifically examined vaccinating children under 5 years of age with improved vaccines, evaluating vaccines with combinations of increased vaccine effectiveness, cross-protection between strains (breadth) and duration of immunity. We evaluated cost-effectiveness using incremental cost-effectiveness ratios (ICERs) and incremental net monetary benefits (INMBs) for a range of values for the willingness-to-pay (WTP) per DALY averted. Finally, we estimated threshold per-dose vaccine prices at which vaccination becomes cost-effective. RESULTS: Next-generation vaccines can be cost-effective, dependent on the vaccine characteristics and assumed WTP thresholds. Universal vaccines (assumed to provide long-term and broad immunity) are most cost-effective in Kenya across three of four WTP thresholds evaluated, with the lowest median value of ICER per DALY averted (263,95263, 95% Credible Interval (CrI):  - 1698, 1061)andthehighestmedianINMBs.AtaWTPof1061) and the highest median INMBs. At a WTP of 623, universal vaccines are cost-effective at or below a median price of 5.16perdose(955.16 per dose (95% CrI: 0.94, $18.57). We also show that the assumed mechanism underlying infection-derived immunity strongly impacts vaccine outcomes. CONCLUSIONS: This evaluation provides evidence for country-level decision makers about future next-generation vaccine introduction, as well as global research funders about the potential market for these vaccines. Next-generation vaccines may offer a cost-effective intervention to reduce influenza burden in low-income countries with year-round seasonality like Kenya

    Endostatin expression in pancreatic tissue is modulated by elastase

    Get PDF
    Pancreatic tumours are scirrhous, avascular tumours, suggesting that they may produce angiogenesis inhibitors that suppress the growth of the vasculature to the tumour and metastases. We have sought evidence for the angiogenesis inhibitor, endostatin, in normal and cancerous pancreatic tissue. Using Western blotting, we found mature 20 kDa endostatin in cancer tissue but not in normal tissue. Several endostatin-related peptides of higher mol wt were present in both tissues. Extracts from normal tissue were able to degrade exogenous endostatin, whereas extracts from cancer were without effect. Although the exocrine pancreas secretes inactive proenzymes of trypsin, chymotrypsin and elastase, their possible role in this degradation was examined. The trypsin/chymotrypsin inhibitor, Glycine max, did not prevent the degradation of endostatin by normal pancreatic extracts but elastatinal, a specific inhibitor of elastase, reduced the rate of degradation. Extracts of pancreatic tumours did not express any detectable elastase activity, but an elastase (Km 1.1 mM) was expressed by extracts of normal pancreas. We conclude that endostatin is present and stable in pancreatic cancer tissues, which may explain their avascular nature, but that normal pancreatic tissue expresses enzymes, including elastase, which rapidly degrade endostatin. The stability of endostatin may have implications for its therapeutic use
    • …
    corecore