946 research outputs found
SDF-1 and PDGF enhance [alpha]v[beta]5-mediated ERK activation and adhesion-independent growth of human pre-B cell lines
CD23 acts through the [alpha]v[beta]5 integrin to promote growth of human pre-B cell lines in an adhesion-independent manner. [alpha]v[beta]5 is expressed on normal B-cell precursors in the bone marrow. Soluble CD23 (sCD23), short CD23-derived peptides containing the arg-lys-cys (RKC) motif recognized by [alpha]v[beta]5 and anti-[alpha]v[beta]5 monoclonal antibodies (MAbs) all sustain growth of pre-B cell lines. The chemokine stromal cell-derived factor-1 (SDF-1) regulates key processes during B-cell development. SDF-1 enhanced the growth-sustaining effect driven by ligation of [alpha]v[beta]5 with anti-[alpha]v[beta]5 MAb 15F-11, sCD23 or CD23-derived RKC-containing peptides. This effect was restricted to B-cell precursors and was specific to SDF-1. The enhancement in growth was associated with the activation of extracellular signal-regulated kinase (ERK) and both these responses were attenuated by the MEK inhibitor U0126. Finally, platelet-derived growth factor also enhanced both [alpha]v[beta]5-mediated cell growth and ERK activation. The data suggest that adhesion-independent growth-promoting signals delivered to B-cell precursors through the [alpha]v[beta]5 integrin can be modulated by cross-talk with receptors linked to both G-protein and tyrosine kinase-coupled signalling pathways
Recommended from our members
Self-assembly of minimal peptoid sequences
Peptoids are biofunctional N-substituted glycine peptidomimics. Their self-assembly is of fundamental interest because they demonstrate alternatives to conventional peptide structures based on backbone chirality and beta-sheet hydrogen bonding. The search for self-assembling, water-soluble “minimal” sequences, be they peptide or peptidomimic, is a further challenge. Such sequences are highly desired for their compatibility with biomacromolecules and convenient synthesis for broader application. We report the self-assembly of a set of trimeric, water-soluble α-peptoids that exhibit a relatively low critical aggregation concentration (CAC ∼ 0.3 wt %). Cryo-EM and angle-resolved DLS show different sequence-dependent morphologies, namely uniform ca. 6 nm wide nanofibers, sheets, and clusters of globular assemblies. Absorbance and fluorescence spectroscopies indicate unique phenyl environments for π-interactions in the highly ordered nanofibers. Assembly of our peptoids takes place when the sequences are fully ionized, representing a departure from superficially similar amyloid-type hydrogen-bonded peptide nanostructures and expanding the horizons of assembly for sequence-specific bio- and biomimetic macromolecules
Piezoelectric-based apparatus for strain tuning
We report the design and construction of piezoelectric-based apparatus for
applying continuously tuneable compressive and tensile strains to test samples.
It can be used across a wide temperature range, including cryogenic
temperatures. The achievable strain is large, so far up to 0.23% at cryogenic
temperatures. The apparatus is compact and compatible with a wide variety of
experimental probes. In addition, we present a method for mounting
high-aspect-ratio samples in order to achieve high strain homogeneity.Comment: 8 pages, 8 figure
Assessment of potential anti-cancer stem cell activity of marine algal compounds using an in vitro mammosphere assay
Background: The cancer stem cell (CSC) theory proposes that tumours arise from and are sustained by a subpopulation of cells with both cancer and stem cell properties. One of the key hallmarks of CSCs is the ability to grow anchorage-independently under serum-free culture conditions resulting in the formation of tumourspheres. It has further been reported that these cells are resistant to traditional chemotherapeutic agents.
Methods: In this study, the tumoursphere assay was validated in MCF-7 cells and used to screen novel marine algal compounds for potential anti-cancer stem cell (CSC) activity in vitro.
Results: MCF-7 breast cancer cells were observed to generate tumourspheres or mammospheres after 3-5 days growth in anchorage-independent conditions and an apparent enrichment in potential CSCs was observed by an increase in the proportion of CD44high/CD24low marker-bearing cells and Oct4 expression compared to those in the bulk population grown in regular adherent conditions. Using this assay, a set of algal metabolites was screened for the ability to inhibit mammosphere development as a measure of potential anti-CSC activity. We report that the polyhalogenated monoterpene stereoisomers RU017 and RU018 isolated from the red alga Plocamium cornutum, both of which displayed no cytotoxicity against either adherent MCF-7 breast cancer or MCF-12A non-transformed breast epithelial cells, were able to prevent MCF-7 mammosphere formation in vitro. On the other hand, neither the brown algal carotenoid fucoxanthin nor the chemotherapeutic paclitaxel, both of which were toxic to adherent MCF-7 and MCF-12A cells, were able to inhibit mammosphere formation. In fact, pre-treatment with paclitaxel appeared to enhance mammosphere formation and development, a finding which is consistent with the reported resistance of CSCs to traditional chemotherapeutic agents.
Conclusion: Due to the proposed clinical significance of CSC in terms of tumour initiation and metastasis, the identification of agents able to inhibit this subpopulation has clinical significance
Commensurate period Charge Density Modulations throughout the Pseudogap Regime
Theories based upon strong real space (r-space) electron electron
interactions have long predicted that unidirectional charge density modulations
(CDM) with four unit cell (4) periodicity should occur in the hole doped
cuprate Mott insulator (MI). Experimentally, however, increasing the hole
density p is reported to cause the conventionally defined wavevector of
the CDM to evolve continuously as if driven primarily by momentum space
(k-space) effects. Here we introduce phase resolved electronic structure
visualization for determination of the cuprate CDM wavevector. Remarkably, this
new technique reveals a virtually doping independent locking of the local CDM
wavevector at throughout the underdoped phase diagram of the
canonical cuprate . These observations have significant
fundamental consequences because they are orthogonal to a k-space (Fermi
surface) based picture of the cuprate CDM but are consistent with strong
coupling r-space based theories. Our findings imply that it is the latter that
provide the intrinsic organizational principle for the cuprate CDM state
Machine Learning in Electronic Quantum Matter Imaging Experiments
Essentials of the scientific discovery process have remained largely
unchanged for centuries: systematic human observation of natural phenomena is
used to form hypotheses that, when validated through experimentation, are
generalized into established scientific theory. Today, however, we face major
challenges because automated instrumentation and large-scale data acquisition
are generating data sets of such volume and complexity as to defy human
analysis. Radically different scientific approaches are needed, with machine
learning (ML) showing great promise, not least for materials science research.
Hence, given recent advances in ML analysis of synthetic data representing
electronic quantum matter (EQM), the next challenge is for ML to engage
equivalently with experimental data. For example, atomic-scale visualization of
EQM yields arrays of complex electronic structure images, that frequently elude
effective analyses. Here we report development and training of an array of
artificial neural networks (ANN) designed to recognize different types of
hypothesized order hidden in EQM image-arrays. These ANNs are used to analyze
an experimentally-derived EQM image archive from carrier-doped cuprate Mott
insulators. Throughout these noisy and complex data, the ANNs discover the
existence of a lattice-commensurate, four-unit-cell periodic,
translational-symmetry-breaking EQM state. Further, the ANNs find these
phenomena to be unidirectional, revealing a coincident nematic EQM state.
Strong-coupling theories of electronic liquid crystals are congruent with all
these observations.Comment: 44 pages, 15 figure
Reductive Coupling of Diynes at Rhodium Gives Fluorescent Rhodacyclopentadienes or Phosphorescent Rhodium 2, 2’-Biphenyl Complexes
Reactions of [Rh(κ2-O,O-acac)(PMe3)2] (acac=acetylacetonato) and α,ω-bis(arylbutadiynyl)alkanes afford two isomeric types of MC4 metallacycles with very different photophysical properties. As a result of a [2+2] reductive coupling at Rh, 2,5-bis(arylethynyl)rhodacyclopentadienes (A) are formed, which display intense fluorescence (Φ=0.07–0.54, τ=0.2–2.5 ns) despite the presence of the heavy metal atom. Rhodium biphenyl complexes (B), which show exceptionally long-lived (hundreds of μs) phosphorescence (Φ=0.01–0.33) at room temperature in solution, have been isolated as a second isomer originating from an unusual [4+2] cycloaddition reaction and a subsequent β-H-shift. We attribute the different photophysical properties of isomers A and B to a higher excited state density and a less stabilized T1 state in the biphenyl complexes B, allowing for more efficient intersystem crossing S1→Tn and T1→S0. Control of the isomer distribution is achieved by modification of the bis- (diyne) linker length, providing a fundamentally new route to access photoactive metal biphenyl compounds
The political import of deconstruction—Derrida’s limits?: a forum on Jacques Derrida’s specters of Marx after 25 Years, part I
Jacques Derrida delivered the basis of The Specters of Marx: The State of the Debt, the Work of Mourning, & the New International as a plenary address at the conference ‘Whither Marxism?’ hosted by the University of California, Riverside, in 1993. The longer book version was published in French the same year and appeared in English and Portuguese the following year. In the decade after the publication of Specters, Derrida’s analyses provoked a large critical literature and invited both consternation and celebration by figures such as Antonio Negri, Wendy Brown and Frederic Jameson. This forum seeks to stimulate new reflections on Derrida, deconstruction and Specters of Marx by considering how the futures past announced by the book have fared after an eventful quarter century. Maja Zehfuss, Antonio Vázquez-Arroyo and Dan Bulley and Bal Sokhi-Bulley offer sharp, occasionally exasperated, meditations on the political import of deconstruction and the limits of Derrida’s diagnoses in Specters of Marx but also identify possible paths forward for a global politics taking inspiration in Derrida’s work of the 1990s
Molecular structural dynamics in water–ethanol mixtures: Spectroscopy with polarized neutrons simultaneously accessing collective and self-diffusion
Molecular Structural Dynamics in Water-Ethanol Mixtures: Spectroscopy with Polarized Neutrons Simultaneously Accessing Collective and Self-Diffusion
Binary mixtures of water with lower alcohols display non-linear phase
behaviour upon mixing which are attributed to potential cluster formation at
molecular level. Unravelling such elusive structures requires the investigation
of hydrogen-bonding sub-nanosecond dynamics. We employ high-resolution neutron
time-of-flight spectroscopy with polarization analysis in combination with
selective deuteration to study the concentration-dependent structural dynamics,
in the water rich part of the phase diagram of water-ethanol mixtures. This
method enables the simultaneous access to atomic correlations in space and
time, and allows us to separate spatially incoherent scattering probing
self-diffusion of the ethanol fraction from the coherent scattering probing
collective diffusion of the water network as a whole. Our observations indicate
an enhanced rigidity of the hydrogen bond network at mesoscopic lengthscale
compared to the intra-molecular scale as the ethanol fraction increases, which
is consistent with the hypothesis of clusters
- …
