946 research outputs found

    SDF-1 and PDGF enhance [alpha]v[beta]5-mediated ERK activation and adhesion-independent growth of human pre-B cell lines

    Get PDF
    CD23 acts through the [alpha]v[beta]5 integrin to promote growth of human pre-B cell lines in an adhesion-independent manner. [alpha]v[beta]5 is expressed on normal B-cell precursors in the bone marrow. Soluble CD23 (sCD23), short CD23-derived peptides containing the arg-lys-cys (RKC) motif recognized by [alpha]v[beta]5 and anti-[alpha]v[beta]5 monoclonal antibodies (MAbs) all sustain growth of pre-B cell lines. The chemokine stromal cell-derived factor-1 (SDF-1) regulates key processes during B-cell development. SDF-1 enhanced the growth-sustaining effect driven by ligation of [alpha]v[beta]5 with anti-[alpha]v[beta]5 MAb 15F-11, sCD23 or CD23-derived RKC-containing peptides. This effect was restricted to B-cell precursors and was specific to SDF-1. The enhancement in growth was associated with the activation of extracellular signal-regulated kinase (ERK) and both these responses were attenuated by the MEK inhibitor U0126. Finally, platelet-derived growth factor also enhanced both [alpha]v[beta]5-mediated cell growth and ERK activation. The data suggest that adhesion-independent growth-promoting signals delivered to B-cell precursors through the [alpha]v[beta]5 integrin can be modulated by cross-talk with receptors linked to both G-protein and tyrosine kinase-coupled signalling pathways

    Piezoelectric-based apparatus for strain tuning

    Get PDF
    We report the design and construction of piezoelectric-based apparatus for applying continuously tuneable compressive and tensile strains to test samples. It can be used across a wide temperature range, including cryogenic temperatures. The achievable strain is large, so far up to 0.23% at cryogenic temperatures. The apparatus is compact and compatible with a wide variety of experimental probes. In addition, we present a method for mounting high-aspect-ratio samples in order to achieve high strain homogeneity.Comment: 8 pages, 8 figure

    Assessment of potential anti-cancer stem cell activity of marine algal compounds using an in vitro mammosphere assay

    Get PDF
    Background: The cancer stem cell (CSC) theory proposes that tumours arise from and are sustained by a subpopulation of cells with both cancer and stem cell properties. One of the key hallmarks of CSCs is the ability to grow anchorage-independently under serum-free culture conditions resulting in the formation of tumourspheres. It has further been reported that these cells are resistant to traditional chemotherapeutic agents. Methods: In this study, the tumoursphere assay was validated in MCF-7 cells and used to screen novel marine algal compounds for potential anti-cancer stem cell (CSC) activity in vitro. Results: MCF-7 breast cancer cells were observed to generate tumourspheres or mammospheres after 3-5 days growth in anchorage-independent conditions and an apparent enrichment in potential CSCs was observed by an increase in the proportion of CD44high/CD24low marker-bearing cells and Oct4 expression compared to those in the bulk population grown in regular adherent conditions. Using this assay, a set of algal metabolites was screened for the ability to inhibit mammosphere development as a measure of potential anti-CSC activity. We report that the polyhalogenated monoterpene stereoisomers RU017 and RU018 isolated from the red alga Plocamium cornutum, both of which displayed no cytotoxicity against either adherent MCF-7 breast cancer or MCF-12A non-transformed breast epithelial cells, were able to prevent MCF-7 mammosphere formation in vitro. On the other hand, neither the brown algal carotenoid fucoxanthin nor the chemotherapeutic paclitaxel, both of which were toxic to adherent MCF-7 and MCF-12A cells, were able to inhibit mammosphere formation. In fact, pre-treatment with paclitaxel appeared to enhance mammosphere formation and development, a finding which is consistent with the reported resistance of CSCs to traditional chemotherapeutic agents. Conclusion: Due to the proposed clinical significance of CSC in terms of tumour initiation and metastasis, the identification of agents able to inhibit this subpopulation has clinical significance

    Commensurate 4a04a_0 period Charge Density Modulations throughout the Bi2Sr2CaCu2O8+xBi_2Sr_2CaCu_2O_{8+x} Pseudogap Regime

    Full text link
    Theories based upon strong real space (r-space) electron electron interactions have long predicted that unidirectional charge density modulations (CDM) with four unit cell (4a0a_0) periodicity should occur in the hole doped cuprate Mott insulator (MI). Experimentally, however, increasing the hole density p is reported to cause the conventionally defined wavevector QAQ_A of the CDM to evolve continuously as if driven primarily by momentum space (k-space) effects. Here we introduce phase resolved electronic structure visualization for determination of the cuprate CDM wavevector. Remarkably, this new technique reveals a virtually doping independent locking of the local CDM wavevector at Q0=2π/4a0|Q_0|=2\pi/4a_0 throughout the underdoped phase diagram of the canonical cuprate Bi2Sr2CaCu2O8Bi_2Sr_2CaCu_2O_8. These observations have significant fundamental consequences because they are orthogonal to a k-space (Fermi surface) based picture of the cuprate CDM but are consistent with strong coupling r-space based theories. Our findings imply that it is the latter that provide the intrinsic organizational principle for the cuprate CDM state

    Machine Learning in Electronic Quantum Matter Imaging Experiments

    Full text link
    Essentials of the scientific discovery process have remained largely unchanged for centuries: systematic human observation of natural phenomena is used to form hypotheses that, when validated through experimentation, are generalized into established scientific theory. Today, however, we face major challenges because automated instrumentation and large-scale data acquisition are generating data sets of such volume and complexity as to defy human analysis. Radically different scientific approaches are needed, with machine learning (ML) showing great promise, not least for materials science research. Hence, given recent advances in ML analysis of synthetic data representing electronic quantum matter (EQM), the next challenge is for ML to engage equivalently with experimental data. For example, atomic-scale visualization of EQM yields arrays of complex electronic structure images, that frequently elude effective analyses. Here we report development and training of an array of artificial neural networks (ANN) designed to recognize different types of hypothesized order hidden in EQM image-arrays. These ANNs are used to analyze an experimentally-derived EQM image archive from carrier-doped cuprate Mott insulators. Throughout these noisy and complex data, the ANNs discover the existence of a lattice-commensurate, four-unit-cell periodic, translational-symmetry-breaking EQM state. Further, the ANNs find these phenomena to be unidirectional, revealing a coincident nematic EQM state. Strong-coupling theories of electronic liquid crystals are congruent with all these observations.Comment: 44 pages, 15 figure

    Reductive Coupling of Diynes at Rhodium Gives Fluorescent Rhodacyclopentadienes or Phosphorescent Rhodium 2, 2’-Biphenyl Complexes

    Get PDF
    Reactions of [Rh(κ2-O,O-acac)(PMe3)2] (acac=acetylacetonato) and α,ω-bis(arylbutadiynyl)alkanes afford two isomeric types of MC4 metallacycles with very different photophysical properties. As a result of a [2+2] reductive coupling at Rh, 2,5-bis(arylethynyl)rhodacyclopentadienes (A) are formed, which display intense fluorescence (Φ=0.07–0.54, τ=0.2–2.5 ns) despite the presence of the heavy metal atom. Rhodium biphenyl complexes (B), which show exceptionally long-lived (hundreds of μs) phosphorescence (Φ=0.01–0.33) at room temperature in solution, have been isolated as a second isomer originating from an unusual [4+2] cycloaddition reaction and a subsequent β-H-shift. We attribute the different photophysical properties of isomers A and B to a higher excited state density and a less stabilized T1 state in the biphenyl complexes B, allowing for more efficient intersystem crossing S1→Tn and T1→S0. Control of the isomer distribution is achieved by modification of the bis- (diyne) linker length, providing a fundamentally new route to access photoactive metal biphenyl compounds

    The political import of deconstruction—Derrida’s limits?: a forum on Jacques Derrida’s specters of Marx after 25 Years, part I

    Get PDF
    Jacques Derrida delivered the basis of The Specters of Marx: The State of the Debt, the Work of Mourning, & the New International as a plenary address at the conference ‘Whither Marxism?’ hosted by the University of California, Riverside, in 1993. The longer book version was published in French the same year and appeared in English and Portuguese the following year. In the decade after the publication of Specters, Derrida’s analyses provoked a large critical literature and invited both consternation and celebration by figures such as Antonio Negri, Wendy Brown and Frederic Jameson. This forum seeks to stimulate new reflections on Derrida, deconstruction and Specters of Marx by considering how the futures past announced by the book have fared after an eventful quarter century. Maja Zehfuss, Antonio Vázquez-Arroyo and Dan Bulley and Bal Sokhi-Bulley offer sharp, occasionally exasperated, meditations on the political import of deconstruction and the limits of Derrida’s diagnoses in Specters of Marx but also identify possible paths forward for a global politics taking inspiration in Derrida’s work of the 1990s

    Molecular Structural Dynamics in Water-Ethanol Mixtures: Spectroscopy with Polarized Neutrons Simultaneously Accessing Collective and Self-Diffusion

    Full text link
    Binary mixtures of water with lower alcohols display non-linear phase behaviour upon mixing which are attributed to potential cluster formation at molecular level. Unravelling such elusive structures requires the investigation of hydrogen-bonding sub-nanosecond dynamics. We employ high-resolution neutron time-of-flight spectroscopy with polarization analysis in combination with selective deuteration to study the concentration-dependent structural dynamics, in the water rich part of the phase diagram of water-ethanol mixtures. This method enables the simultaneous access to atomic correlations in space and time, and allows us to separate spatially incoherent scattering probing self-diffusion of the ethanol fraction from the coherent scattering probing collective diffusion of the water network as a whole. Our observations indicate an enhanced rigidity of the hydrogen bond network at mesoscopic lengthscale compared to the intra-molecular scale as the ethanol fraction increases, which is consistent with the hypothesis of clusters
    corecore