17,479 research outputs found

    Superconducting Surface Impedance under Radiofrequency Field

    Full text link
    Based on BCS theory with moving Cooper pairs, the electron states distribution at 0K and the probability of electron occupation with finite temperature have been derived and applied to anomalous skin effect theory to obtain the surface impedance of a superconductor under radiofrequency (RF) field. We present the numerical results for Nb and compare these with representative RF field-dependent effective surface resistance measurements from a 1.5 GHz resonant structure

    Energy management of three-dimensional minimum-time intercept

    Get PDF
    A real-time computer algorithm to control and optimize aircraft flight profiles is described and applied to a three-dimensional minimum-time intercept mission

    An on-board near-optimal climb-dash energy management

    Get PDF
    On-board real time flight control is studied in order to develop algorithms which are simple enough to be used in practice, for a variety of missions involving three dimensional flight. The intercept mission in symmetric flight is emphasized. Extensive computation is required on the ground prior to the mission but the ensuing on-board exploitation is extremely simple. The scheme takes advantage of the boundary layer structure common in singular perturbations, arising with the multiple time scales appropriate to aircraft dynamics. Energy modelling of aircraft is used as the starting point for the analysis. In the symmetric case, a nominal path is generated which fairs into the dash or cruise state. Feedback coefficients are found as functions of the remaining energy to go (dash energy less current energy) along the nominal path

    Optimal symmetric flight with an intermediate vehicle model

    Get PDF
    Optimal flight in the vertical plane with a vehicle model intermediate in complexity between the point-mass and energy models is studied. Flight-path angle takes on the role of a control variable. Range-open problems feature subarcs of vertical flight and singular subarcs. The class of altitude-speed-range-time optimization problems with fuel expenditure unspecified is investigated and some interesting phenomena uncovered. The maximum-lift-to-drag glide appears as part of the family, final-time-open, with appropriate initial and terminal transient exceeding level-flight drag, some members exhibiting oscillations. Oscillatory paths generally fail the Jacobi test for durations exceeding a period and furnish a minimum only for short-duration problems

    Spitzer Observations of Spacecraft Target 162173 (1999 JU3)

    Full text link
    Near-Earth asteroid 162173 (1999 JU3) is the primary target of the Hayabusa-2 sample return mission, and a potential target of the Marco Polo sample return mission. Earth-based studies of this object are fundamental to these missions. We present a mid-infrared spectrum (5-38 microns) of 1999 JU3 obtained with NASA's Spitzer Space Telescope in May 2008. These observations place new constraints on the surface properties of this asteroid. To fit our spectrum we used the near-Earth asteroid thermal model (NEATM) and the more complex thermophysical model (TPM). However, the position of the spin-pole, which is uncertain, is a crucial input parameter for constraining the thermal inertia with the TPM; hence, we consider two pole orientations. In the extreme case of an equatorial retrograde geometry we derive a lower limit to the thermal inertia of 150 J/m^2/K/s^0.5. If we adopt the pole orientation of Abe et al. (2008a) our best-fit thermal model yields a value for the thermal inertia of 700+/-200 J/m^2/K/s^0.5 and even higher values are allowed by the uncertainty in the spectral shape due to the absolute flux calibration. The lower limit to the thermal inertia, which is unlikely but possible, would be consistent with a fine regolith similar to wthat is found for asteroid 433 Eros. However, the thermal inertia is expected to be higher, possibly similar to or greater than that on asteroid 25143 Itokawa. Accurately determining the spin-pole of asteroid 162173 will narrow the range of possible values for its thermal inertia.Comment: 4 pages, 2 figures; to be published as a Letter in Astronomy and Astrophysic

    Ovalbumin sensitization and challenge increases the number of lung cells possessing a mesenchymal stromal cell phenotype

    Get PDF
    Abstract Background Recent studies have indicated the presence of multipotent mesenchymal stromal cells (MSCs) in human lung diseases. Excess airway smooth muscle, myofibroblasts and activated fibroblasts have each been noted in asthma, suggesting that mesenchymal progenitor cells play a role in asthma pathogenesis. We therefore sought to determine whether MSCs are present in the lungs of ovalbumin (OVA)-sensitized and challenged mice, a model of allergic airways disease. Methods Balb/c mice were sensitized and challenged with PBS or OVA over a 25 day period. Flow cytometry as well as colony forming and differentiation potential were used to analyze the emergence of MSCs along with gene expression studies using immunochemical analyses, quantitative polymerase chain reaction (qPCR), and gene expression beadchips. Results A CD45-negative subset of cells expressed Stro-1, Sca-1, CD73 and CD105. Selection for these markers and negative selection against CD45 yielded a population of cells capable of adipogenic, osteogenic and chondrogenic differentiation. Lungs from OVA-treated mice demonstrated a greater average colony forming unit-fibroblast (CFU-F) than control mice. Sorted cells differed from unsorted lung adherent cells, exhibiting a pattern of gene expression nearly identical to bone marrow-derived sorted cells. Finally, cells isolated from the bronchoalveolar lavage of a human asthma patient showed identical patterns of cell surface markers and differentiation potential. Conclusions In summary, allergen sensitization and challenge is accompanied by an increase of MSCs resident in the lungs that may regulate inflammatory and fibrotic responses.http://deepblue.lib.umich.edu/bitstream/2027.42/78265/1/1465-9921-11-127.xmlhttp://deepblue.lib.umich.edu/bitstream/2027.42/78265/2/1465-9921-11-127.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/78265/3/1465-9921-11-127-S1.DOCPeer Reviewe

    Climb-dash real-time calculations

    Get PDF
    On-board rear-optimal climb-dash energy management, optimal symmetric flight with an intermediate vehicle model, and energy states are presented
    corecore