19,710 research outputs found

    On the stability of quantum holonomic gates

    Full text link
    We provide a unified geometrical description for analyzing the stability of holonomic quantum gates in the presence of imprecise driving controls (parametric noise). We consider the situation in which these fluctuations do not affect the adiabatic evolution but can reduce the logical gate performance. Using the intrinsic geometric properties of the holonomic gates, we show under which conditions on noise's correlation time and strength, the fluctuations in the driving field cancel out. In this way, we provide theoretical support to previous numerical simulations. We also briefly comment on the error due to the mismatch between real and nominal time of the period of the driving fields and show that it can be reduced by suitably increasing the adiabatic time.Comment: 7 page

    Eddy covariance measurements and parameterisation of traffic related particle emissions in an urban environment

    Get PDF
    Urban aerosol sources are important due to the health effects of particles and their potential impact on climate. Our aim has been to quantify and parameterise the urban aerosol source number flux <i>F</i> (particles m<sup>&minus;2</sup> s<sup>&minus;1</sup>), in order to help improve how this source is represented in air quality and climate models. We applied an aerosol eddy covariance flux system 118.0 m above the city of Stockholm. This allowed us to measure the aerosol number flux for particles with diameters >11 nm. Upward source fluxes dominated completely over deposition fluxes in the collected dataset. Therefore, the measured fluxes were regarded as a good approximation of the aerosol surface sources. Upward fluxes were parameterised using a traffic activity (<I>TA</I>) database, which is based on traffic intensity measurements. <P style='line-height: 20px;'> The footprint (area on the surface from which sources and sinks affect flux measurements, located at one point in space) of the eddy system covered road and building construction areas, forests and residential areas, as well as roads with high traffic density and smaller streets. We found pronounced diurnal cycles in the particle flux data, which were well correlated with the diurnal cycles in traffic activities, strongly supporting the conclusion that the major part of the aerosol fluxes was due to traffic emissions. <P style='line-height: 20px;'> The emission factor for the fleet mix in the measurement area <I>EF</I><sub><i>fm</i></sub>=1.4&plusmn;0.1&times;10<sup>14</sup> veh<sup>&minus;1</sup> km<sup>&minus;1</sup> was deduced. This agrees fairly well with other studies, although this study has an advantage of representing the actual effective emission from a mixed vehicle fleet. Emission from other sources, not traffic related, account for a <I>F</I><sub>0</sub>=15&plusmn;18&times;10<sup>6</sup> m<sup>&minus;2</sup> s<sup>&minus;1</sup>. The urban aerosol source flux can then be written as <I>F=EF</I><sub><i>fm</i></sub><I>TA+F</I><sub>0</sub>. In a second attempt to find a parameterisation, the friction velocity <i>U</i><sub>*</sub> normalised with the average friction velocity <!-- MATH overlineUastoverline{U_ast} --> <IMG WIDTH='21' HEIGHT='36' ALIGN='MIDDLE' BORDER='0' src='http://www.atmos-chem-phys.net/6/769/2006/acp-6-769-img15.gif' ALT='overlineUastoverline{U_ast}'> has been included, <I>F=EF</I><!-- MATH fmTAleft(fracUastoverlineUastight)0.4+F0_{fm }TAleft({frac{U_ast }{overline{U_ast}}} ight)^{0.4}{+}F_{0} --> <IMG WIDTH='136' HEIGHT='51' ALIGN='MIDDLE' BORDER='0' src='http://www.atmos-chem-phys.net/6/769/2006/acp-6-769-img16.gif' ALT='fmTAleft(fracUastoverlineUastright)0.4+F0_{fm }TAleft({frac{U_ast }{overline{U_ast}}}right)^{0.4}{+}F_{0}'>. This parameterisation results in a somewhat reduced emission factor, 1.3&times;10<sup>14</sup> veh<sup>&minus;1</sup> km<sup>&minus;1</sup>. When multiple linear regression have been used, two emission factors are found, one for light duty vehicles <I>EF</I><sub>LDV</sub>=0.3&plusmn;0.3&times;10<sup>14</sup> veh<sup>&minus;1</sup> km<sup>&minus;1</sup> and one for heavy-duty vehicles, <I>EF</I><sub>HDV</sub>=19.8&plusmn;4.0&times;10<sup>14</sup> veh<sup>&minus;1</sup> km<sup>&minus;1</sup>, and <i>F</I><sub>0</sub>=19&plusmn;16&times;10<sup>6</sup> m<sup>&minus;2</sup> s<sup>&minus;1</sup>. The results show that during weekdays ~70&ndash;80% of the emissions came from HDV

    Non-adiabatic holonomic quantum computation

    Full text link
    We develop a non-adiabatic generalization of holonomic quantum computation in which high-speed universal quantum gates can be realized by using non-Abelian geometric phases. We show how a set of non-adiabatic holonomic one- and two-qubit gates can be implemented by utilizing optical transitions in a generic three-level Λ\Lambda configuration. Our scheme opens up for universal holonomic quantum computation on qubits characterized by short coherence times.Comment: Some changes, journal reference adde

    Dynamical Casimir effect entangles artificial atoms

    Get PDF
    We show that the physics underlying the dynamical Casimir effect may generate multipartite quantum correlations. To achieve it, we propose a circuit quantum electrodynamics (cQED) scenario involving superconducting quantum interference devices (SQUIDs), cavities, and superconducting qubits, also called artificial atoms. Our results predict the generation of highly entangled states for two and three superconducting qubits in different geometric configurations with realistic parameters. This proposal paves the way for a scalable method of multipartite entanglement generation in cavity networks through dynamical Casimir physics.Comment: Improved version and references added. Accepted for publication in Physical Review Letter

    Average characteristic polynomials in the two-matrix model

    Full text link
    The two-matrix model is defined on pairs of Hermitian matrices (M1,M2)(M_1,M_2) of size n×nn\times n by the probability measure 1Znexp(Tr(V(M1)W(M2)+τM1M2)) dM1 dM2,\frac{1}{Z_n} \exp\left(\textrm{Tr} (-V(M_1)-W(M_2)+\tau M_1M_2)\right)\ dM_1\ dM_2, where VV and WW are given potential functions and \tau\in\er. We study averages of products and ratios of characteristic polynomials in the two-matrix model, where both matrices M1M_1 and M2M_2 may appear in a combined way in both numerator and denominator. We obtain determinantal expressions for such averages. The determinants are constructed from several building blocks: the biorthogonal polynomials pn(x)p_n(x) and qn(y)q_n(y) associated to the two-matrix model; certain transformed functions n(w)\P_n(w) and \Q_n(v); and finally Cauchy-type transforms of the four Eynard-Mehta kernels K1,1K_{1,1}, K1,2K_{1,2}, K2,1K_{2,1} and K2,2K_{2,2}. In this way we generalize known results for the 11-matrix model. Our results also imply a new proof of the Eynard-Mehta theorem for correlation functions in the two-matrix model, and they lead to a generating function for averages of products of traces.Comment: 28 pages, references adde

    Effects of quasiparticle tunneling in a circuit-QED realization of a strongly driven two-level system

    Full text link
    We experimentally and theoretically study the frequency shift of a driven cavity coupled to a superconducting charge qubit. In addition to previous studies, we here also consider drive strengths large enough to energetically allow for quasiparticle creation. Quasiparticle tunneling leads to the inclusion of more than two charge states in the dynamics. To explain the observed effects, we develop a master equation for the microwave dressed charge states, including quasiparticle tunneling. A bimodal behavior of the frequency shift as a function of gate voltage can be used for sensitive charge detection. However, at weak drives the charge sensitivity is significantly reduced by non-equilibrium quasiparticles, which induce transitions to a non-sensitive state. Unexpectedly, at high enough drives, quasiparticle tunneling enables a very fast relaxation channel to the sensitive state. In this regime, the charge sensitivity is thus robust against externally injected quasiparticles and the desired dynamics prevail over a broad range of temperatures. We find very good agreement between theory and experiment over a wide range of drive strengths and temperatures.Comment: 25 pages, 7 figure

    Internally Electrodynamic Particle Model: Its Experimental Basis and Its Predictions

    Full text link
    The internally electrodynamic (IED) particle model was derived based on overall experimental observations, with the IED process itself being built directly on three experimental facts, a) electric charges present with all material particles, b) an accelerated charge generates electromagnetic waves according to Maxwell's equations and Planck energy equation and c) source motion produces Doppler effect. A set of well-known basic particle equations and properties become predictable based on first principles solutions for the IED process; several key solutions achieved are outlined, including the de Broglie phase wave, de Broglie relations, Schr\"odinger equation, mass, Einstein mass-energy relation, Newton's law of gravity, single particle self interference, and electromagnetic radiation and absorption; these equations and properties have long been broadly experimentally validated or demonstrated. A specific solution also predicts the Doebner-Goldin equation which emerges to represent a form of long-sought quantum wave equation including gravity. A critical review of the key experiments is given which suggests that the IED process underlies the basic particle equations and properties not just sufficiently but also necessarily.Comment: Presentation at the 27th Int Colloq on Group Theo Meth in Phys, 200
    corecore