7,215 research outputs found

    Single production of new gauge bosons from the littlest Higgs model at the TeVTeV energy eγe^{-}\gamma colliders

    Full text link
    In the context of the littlest Higgs(LH) model, we study single production of the new gauge bosons BHB_{H}, ZHZ_{H} and WH±W_{H}^{\pm} via eγe^{-}\gamma collisions and discuss the possibility of detecting these new particles in the TeVTeV energy e+ee^{+}e^{-} collider(LCLC). We find that these new particles can not be detected via the eννe^{-}\nu\nu signal in all of the parameter space preferred by the electroweak precision data. However, the heavy gauge bosons BHB_{H} and ZHZ_{H} may be observed via the decay channel BH(ZH)l+lB_{H}(Z_{H})\to l^{+}l^{-} in wide range of the parameter space.Comment: references added, typos corrected. To be published in Phys. Rev.

    Little Technicolor

    Full text link
    Inspired by the AdS/CFT correspondence, we show that any G/H symmetry breaking pattern can be described by a simple two-site moose diagram. This construction trivially reproduces the CCWZ prescription in the context of Hidden Local Symmetry. We interpret this moose in a novel way to show that many little Higgs theories can emerge from ordinary chiral symmetry breaking in scaled-up QCD. We apply this reasoning to the simple group little Higgs to see that the same low energy degrees of freedom can arise from a variety of UV complete theories. We also show how models of holographic composite Higgs bosons can turn into brane-localized little technicolor theories by "integrating in" the IR brane.Comment: 26 pages, 2 figures; v2: references added; v3: added section on vacuum alignment to match JHEP versio

    Massive Gravity on a Brane

    Get PDF
    At present no theory of a massive graviton is known that is consistent with experiments at both long and short distances. The problem is that consistency with long distance experiments requires the graviton mass to be very small. Such a small graviton mass however implies an ultraviolet cutoff for the theory at length scales far larger than the millimeter scale at which gravity has already been measured. In this paper we attempt to construct a model which avoids this problem. We consider a brane world setup in warped AdS spacetime and we investigate the consequences of writing a mass term for the graviton on a the infrared brane where the local cutoff is of order a large (galactic) distance scale. The advantage of this setup is that the low cutoff for physics on the infrared brane does not significantly affect the predictivity of the theory for observers localized on the ultraviolet brane. For such observers the predictions of this theory agree with general relativity at distances smaller than the infrared scale but go over to those of a theory of massive gravity at longer distances. A careful analysis of the graviton two-point function, however, reveals the presence of a ghost in the low energy spectrum. A mode decomposition of the higher dimensional theory reveals that the ghost corresponds to the radion field. We also investigate the theory with a brane localized mass for the graviton on the ultraviolet brane, and show that the physics of this case is similar to that of a conventional four dimensional theory with a massive graviton, but with one important difference: when the infrared brane decouples and the would-be massive graviton gets heavier than the regular Kaluza--Klein modes, it becomes unstable and it has a finite width to decay off the brane into the continuum of Kaluza-Klein states.Comment: 26 pages, LaTeX. v2: extended version with an appendix added about non Fierz-Pauli mass terms. Few typos corrected. Final version appeared in PR

    Inflaton field governed universe from NKK theory of gravity: stochastic approach

    Full text link
    We study a nonperturbative single field (inflaton) governed cosmological model from a 5D Noncompact Kaluza-Klein (NKK) theory of gravity. The inflaton field fluctuations are estimated for different epochs of the evolution of the universe. We conclude that the inflaton field has been sliding down its (quadratic) potential hill along all the evolution of the universe and a mass of the order of the Hubble parameter. In the model here developed the only free parameter is the Hubble parameter, which could be reconstructed in future from Super Nova Acceleration Probe (SNAP) data.Comment: accepted in European Physical Journal

    Gauge/Anomaly Syzygy and Generalized Brane World Models of Supersymmetry Breaking

    Get PDF
    In theories in which SUSY is broken on a brane separated from the MSSM matter fields, supersymmetry breaking is naturally mediated in a variety of ways. Absent other light fields in the theory, gravity will mediate supersymmetry breaking through the conformal anomaly. If gauge fields propagate in the extra dimension they, too, can mediate supersymmetry breaking effects. The presence of gauge fields in the bulk motivates us to consider the effects of new messenger fields with holomorphic and non-holomorphic couplings to the supersymmetry breaking sector. These can lead to contributions to the soft masses of MSSM fields which dramatically alter the features of brane world scenarios of supersymmetry breaking. In particular, they can solve the negative slepton mass squared problem of anomaly mediation and change the predictions of gaugino mediation.Comment: 4 pages, RevTe

    The Littlest Higgs

    Full text link
    We present an economical theory of natural electroweak symmetry breaking, generalizing an approach based on deconstruction. This theory is the smallest extension of the Standard Model to date that stabilizes the electroweak scale with a naturally light Higgs and weakly coupled new physics at TeV energies. The Higgs is one of a set of pseudo Goldstone bosons in an SU(5)/SO(5)SU(5)/SO(5) nonlinear sigma model. The symmetry breaking scale ff is around a TeV, with the cutoff \Lambda \lsim 4\pi f \sim 10 TeV. A single electroweak doublet, the ``little Higgs'', is automatically much lighter than the other pseudo Goldstone bosons. The quartic self-coupling for the little Higgs is generated by the gauge and Yukawa interactions with a natural size O(g2,λt2)O(g^2,\lambda_t^2), while the top Yukawa coupling generates a negative mass squared triggering electroweak symmetry breaking. Beneath the TeV scale the effective theory is simply the minimal Standard Model. The new particle content at TeV energies consists of one set of spin one bosons with the same quantum numbers as the electroweak gauge bosons, an electroweak singlet quark with charge 2/3, and an electroweak triplet scalar. One loop quadratically divergent corrections to the Higgs mass are cancelled by interactions with these additional particles.Comment: 15 pages. References added. Corrected typos in the discussion of the top Yukawa couplin

    Low-control and robust quantum refrigerator and applications with electronic spins in diamond

    Get PDF
    We propose a general protocol for low-control refrigeration and thermometry of thermal qubits, which can be implemented using electronic spins in diamond. The refrigeration is implemented by a probe, consisting of a network of interacting spins. The protocol involves two operations: (i) free evolution of the probe; and (ii) a swap gate between one spin in the probe and the thermal qubit we wish to cool. We show that if the initial state of the probe falls within a suitable range, and the free evolution of the probe is both unital and conserves the excitation in the zz-direction, then the cooling protocol will always succeed, with an efficiency that depends on the rate of spin dephasing and the swap gate fidelity. Furthermore, measuring the probe after it has cooled many qubits provides an estimate of their temperature. We provide a specific example where the probe is a Heisenberg spin chain, and suggest a physical implementation using electronic spins in diamond. Here the probe is constituted of nitrogen vacancy (NV) centers, while the thermal qubits are dark spins. By using a novel pulse sequence, a chain of NV centers can be made to evolve according to a Heisenberg Hamiltonian. This proposal allows for a range of applications, such as NV-based nuclear magnetic resonance of photosensitive molecules kept in a dark spot on a sample, and it opens up possibilities for the study of quantum thermodynamics, environment-assisted sensing, and many-body physics

    Tensors Mesons in AdS/QCD

    Full text link
    We explore tensor mesons in AdS/QCD focusing on f2 (1270), the lightest spin-two resonance in QCD. We find that the f2 mass and the partial width for f2 -> gamma gamma are in very good agreement with data. In fact, the dimensionless ratio of these two quantities comes out within the current experimental bound. The result for this ratio depends only on Nc and Nf, and the quark and glueball content of the operator responsible for the f2; more importantly, it does not depend on chiral symmetry breaking and so is both independent of much of the arbitrariness of AdS/QCD and completely out of reach of chiral perturbation theory. For comparison, we also explore f2 -> pi pi, which because of its sensitivity to the UV corrections has much more uncertainty. We also calculate the masses of the higher spin resonances on the Regge trajectory of the f2, and find they compare favorably with experiment.Comment: 21 pages, 1 figure; Li's correcte

    The Littlest Higgs in Anti-de Sitter Space

    Full text link
    We implement the SU(5)/SO(5) littlest Higgs theory in a slice of 5D Anti-de Sitter space bounded by a UV brane and an IR brane. In this model, there is a bulk SU(5) gauge symmetry that is broken to SO(5) on the IR brane, and the Higgs boson is contained in the Goldstones from this breaking. All of the interactions on the IR brane preserve the global symmetries that protect the Higgs mass, but a radiative potential is generated through loops that stretch to the UV brane where there are explicit SU(5) violating boundary conditions. Like the original littlest Higgs, this model exhibits collective breaking in that two interactions must be turned on in order to generate a Higgs potential. In AdS space, however, collective breaking does not appear in coupling constants directly but rather in the choice of UV brane boundary conditions. We match this AdS construction to the known low energy structure of the littlest Higgs and comment on some of the tensions inherent in the AdS construction. We calculate the 5D Coleman-Weinberg effective potential for the Higgs and find that collective breaking is manifest. In a simplified model with only the SU(2) gauge structure and the top quark, the physical Higgs mass can be of order 200 GeV with no considerable fine tuning (25%). We sketch a more realistic model involving the entire gauge and fermion structure that also implements T-parity, and we comment on the tension between T-parity and flavor structure.Comment: 42 pages, 7 figures, 3 tables; v2: minor rewording, JHEP format; v3: to match JHEP versio

    A Grassmannian Etude in NMHV Minors

    Full text link
    Arkani-Hamed, Cachazo, Cheung and Kaplan have proposed a Grassmannian formulation for the S-matrix of N=4 Yang-Mills as an integral over link variables. In parallel work, the connected prescription for computing tree amplitudes in Witten's twistor string theory has also been written in terms of link variables. In this paper we extend the six- and seven-point results of arXiv:0909.0229 and arXiv:0909.0499 by providing a simple analytic proof of the equivalence between the two formulas for all tree-level NMHV superamplitudes. Also we note that a simple deformation of the connected prescription integrand gives directly the ACCK Grassmannian integrand in the limit when the deformation parameters equal zero.Comment: 17 page
    corecore