94 research outputs found

    Genome-Wide Analysis of the Yeast Transcriptome Upon Heat and Cold Shock

    Get PDF
    DNA arrays were used to measure changes in transcript levels as yeast cells responded to temperature shocks. The number of genes upregulated by temperature shifts from 30 ℃ to 37℃ or 45℃ was correlated with the severity of the stress. Pre-adaptation of cells, by growth at 37 ℃ previous to the 45℃ shift, caused a decrease in the number of genes related to this response. Heat shock also caused downregulation of a set of genes related to metabolism, cell growth and division, transcription, ribosomal proteins, protein synthesis and destination. Probably all of these responses combine to slow down cell growth and division during heat shock, thus saving energy for cell rescue. The presence of putative binding sites for Xbp1p in the promoters of these genes suggests a hypothetical role for this transcriptional repressor, although other mechanisms may be considered. The response to cold shock (4℃) affected a small number of genes, but the vast majority of those genes induced by exposure to 4 ℃ were also induced during heat shock; these genes share in their promoters cis-regulatory elements previously related to other stress responses

    Protein Expr. Purif.

    No full text

    Carte géologique de la France au 1:50000 : Argeles-sur-mer (n°1097)

    No full text
    BRGM Editions. Format : 60 x 40 c

    Anal. Biochem.

    No full text
    corecore