42 research outputs found

    A comparison of methodological frameworks for digital learning game design

    Get PDF
    Methodological frameworks guide the design of digital learning game based on well founded learning theories and instructional strategies. This study presents a comparison of five methodological frameworks for digital learning game design, highlighting their similarities and differences. The objective is to support the choice of an adequate framework, aiming to promote them as a way to foster principled digital learning games design. This paper concludes that: (i) interactivity, engagement and increasing complexity of challenges are fundamental factors to digital learning game design; (ii) the pedagogical base, the target, the possibility of doing game assessment and the presence of practical guidelines are the selection criteria that influence most the choice of a methodological framework, and (iii) the development of digital learning games - preferably by different research teams - is needed to provide empirical evidence of the utility of framework-based design

    Learning curves: analysing pace and challenge in four successful puzzle games

    Get PDF
    The pace at which challenges are introduced in a game has long been identified as a key determinant of both the enjoyment and difficulty experienced by game players, and their ability to learn from game play. In order to understand how to best pace challenges in games, there is great value in analysing games already demonstrated as highly engaging. Play-through videos of four puzzle games (Portal, Portal 2 Co-operative mode, Braid and Lemmings), were observed and analysed using metrics derived from a behavioural psychology understanding of how people solve problems. Findings suggest that; 1) the main skills learned in each game are introduced separately, 2) through simple puzzles that require only basic performance of that skill, 3) the player has the opportunity to practice and integrate that skill with previously learned skills, and 4) puzzles increase in complexity until the next new skill is introduced. These data provide practical guidance for designers, support contemporary thinking on the design of learning structures in games, and suggest future directions for empirical research

    A survey of haptics in serious gaming

    Get PDF
    Serious gaming often requires high level of realism for training and learning purposes. Haptic technology has been proved to be useful in many applications with an additional perception modality complementary to the audio and the vision. It provides novel user experience to enhance the immersion of virtual reality with a physical control-layer. This survey focuses on the haptic technology and its applications in serious gaming. Several categories of related applications are listed and discussed in details, primarily on haptics acts as cognitive aux and main component in serious games design. We categorize haptic devices into tactile, force feedback and hybrid ones to suit different haptic interfaces, followed by description of common haptic gadgets in gaming. Haptic modeling methods, in particular, available SDKs or libraries either for commercial or academic usage, are summarized. We also analyze the existing research difficulties and technology bottleneck with haptics and foresee the future research directions

    Games in Higher Education

    Get PDF
    International audienceThis entry presents an overview of how and why Learning Games are used in higher education.Learning Games can be defined as games that are designed to captivate the learners’ attention and facilitate their learning process. They have explicit educational purposes and can be used for teaching at all levels of education. All types of games can be used for learning: board games, card games, role-playing games, First Person Shooter games, simulation games, management games, puzzle games, treasure hunts…The main characteristic of Learning Games for higher education is the fact that they are designed to teach specific complex skills taught at university or during professional training programs. Unfortunately, it is not infrequent to observe strong opposition on the part of this target audience to this mode of learning, that these adult students associate with children.The use of Learning Games in primary school seems natural to teachers and is encouraged by specialists in didactics and neuroscience. This learning technique is much less frequently used in middle school and is almost completely absent from higher education. Yet teachers at all these levels are faced with the same problems, such as lack of motivation and investment, for which games are known to be an effective solution. This entry presents an overview of the games that can be used for higher education and the reasons why some teachers and students still show resistance to this type of learning. The numerous advantages of games for higher education will then be presented, citing games presently used in universities, in graduate schools and for professional training. Finally, thisDraft : Marfisi-Schottman I. (2019) Games in Higher Education. In: Tatnall A. (eds) Encyclopedia of Education and Information Technologies. Springer, Chamentry presents the current research questions that need to be addressed concerning the design of games for higher education and the acceptance of these games by teachers

    “Stickier” learning through gameplay: an effective approach to climate change education

    Get PDF
    As the impacts of climate change grow, we need better ways to raise awareness and motivate action. Here we assess the effectiveness of an Arctic climate change card game in comparison with the more conventional approach of reading an illustrated article. In-person assessments with control/reading and treatment/game groups (N = 41), were followed four weeks later with a survey. The game was found to be as effective as the article in teaching content of the impacts of climate change over the short term, and was more effective than the article in long-term retention of new information. Game players also had higher levels of engagement and perceptions that they knew ways to help protect Arctic ecosystems. They were also more likely to recommend the game to friends or family than those in the control group were likely to recommend the article to friends or family. As we consider ways to broaden engagement with climate change, we should include games in our portfolio of approaches
    corecore