1,306 research outputs found

    Estat actual de la flora i la vegetació del Montgó

    Get PDF

    Simulations of the last interglacial and the subsequent glacial inception with the Planet Simulator

    No full text
    International audienceThe Planet Simulator was used to perform equilibrium simulations of the Eemian interglacial at 125 kyBP and the glacial inception at 115 kyBP. Additionally, an accelerated transient simulation of that interval was performed. During this period the changes of Earth's orbital parameters led to a reduction of summer insolation in the northern latitudes. The model has been run in different configurations in order to evaluate the influence of the individual sub-models. The strongest reaction on the insolation change was observed when the atmosphere was coupled with all available sub-systems: a mixed-layer ocean and a sea-ice model as well as a vegetation model. In the simulations representing the interglacial, the near-surface temperature in northern latitudes is higher compared to the preindustrial reference run and almost no perennial snow cover occurs. In the run for the glacial inception, wide areas in mid and high northern latitudes show negative temperature anomalies and wide areas are covered by snow or ice. The transient simulation shows that snow volume starts to increase after summer insolation has fallen below a critical value. The main reason for the beginning glaciation is the locally reduced (summer) temperature as a consequence of reduced summer insolation. Therefore, a larger fraction of precipitation falls as snow and less snow can melt. That mechanism is amplified by the snow-albedo-feedback

    Neurobiology of Depression and Irritable Bowel Syndrome Comorbidity

    Get PDF
    Irritable bowel syndrome is a disabling functional disorder with a frequent comorbidity of depression though underlying mechanisms remain yet little understood. Various signs and symptoms have been determined as diagnostic criteria in recent years and standardized as Rome-III criteria. Irritable bowel syndrome can have constipation-dominant, diarrhea-dominant or mixed clinical presentations. Main features can be summarized as continuous and recurrent abdominal pain or discomfort associated with a change of stool frequency or consistency and usually relief of symptoms with defe-cation in the absence of physical or laboratory abnormalities indicative of an organic etiology. The frequency of major depressive disorder diagnosis reaches up to two thirds of irritable bowel syndrome patients. Moreover, the comorbidity of irritable bowel syndrome among patients with major depression is highly frequent (30%). The mechanism underlying irritable bowel syndrome which have been considered as a kind of a somatization disorder for a long time and now as a functional bowel disease is in the brain-gut axis. Low grade mucosal inflammation and cytokines originating from mucosal inflammation have important functions in the pathophysiology of irritable bowel syndrome and its comorbidity with major depression. Besides the inflammatory factors lumbosacral visceral hyperexcitability which is an individual variation is proposed as the main underlying cause of irritable bowel syndrome. Visceral hyper-excitability is mediated by cytokines and neuro-mediators and stress is known to increase the effect of this mechanism. Furthermore, molecules participating in this mechanism (e.g. cytokines, corticotrophin releasing factor, neurokinins and monoamines) play important roles in the pathophysiology of depression. Increased activation in the pain matrix (thalamus – insula – prefrontal cortex) and insufficiency of endogenous pain inhibitory system are regarded as possible casuses of excessive feeling of irritable bowel syndrome symptoms leading to the dysfunction in the cortical representation of bodily states and negative emotional experiences. Individual variations in the interaction of cytokines, corticotrophin releasing factor, neurokinins (substance P, neurokinin A and neurokinin B) and monoamines (serotonin and norepinephrine), and neuroanatomic functions may answer the question of “why do some irritable bowel syndrome patients experience depression and some do not?”. Moreover, irritable bowel syndrome patients with comorbid depression and anxiety disorders are reported to be complaining more about their irritable bowel syndrome symptoms. Although several treatment strategies are considered by clinicians in the management of irritable bowel syndrome, it is suggested that antidepressant medications to have the priority in the treatment of irritable bowel syndrome with the comorbidity of depression. Selective serotonin re-uptake inhibitors are the drug of choice regarding their safety and side effects profile. Nevertheless, tricyclic antidepressants may also have beneficial effects in lower doses than needed to treat clinical depression. Hypnosis, supportive or cognitive behavioral therapies, dietary and defecation habits management are also suggested as beneficial. The recognition of irritable bowel syndrome by psychiatrists may enhance the success of treatment of depression with the comorbidity of irritable bowel syndrome, which disables the patient and frequently accompanies to major depression. In this review, evidence for depression and irritable bowel syndrome comorbidity, the possible underlying mechanisms of this comorbidity and current treatment approaches regarding proposed mechanisms will be discussed

    Bid participates in genotoxic drug-induced apoptosis of HeLa cells and is essential for death receptor ligands' apoptotic and synergistic effects

    Get PDF
    Background: The BH3-only protein Bid is an important component of death receptor-mediated caspase activation. Bid is cleaved by caspase-8 or -10 into t-Bid, which translocates to mitochondria and triggers the release of caspase-activating factors. Bid has also been reported to be cleaved by other proteases. Methodology/Principal Findings: To test the hypothesis that Bid is a central mediator of stress-induced apoptosis, we investigated the effects of a small molecule Bid inhibitor on stress-induced apoptosis, and generated HeLa cells deficient for Bid. Stable knockdown of bid lead to a pronounced resistance to Fas/CD95- and TRAIL-induced caspase activation and apoptosis, and significantly increased clonogenic survival. While Bid-deficient cells were equally sensitive to ER stress-induced apoptosis, they showed moderate, but significantly reduced levels of apoptosis, as well as increased clonogenic survival in response to the genotoxic drugs Etoposide, Oxaliplatin, and Doxorubicin. Similar effects were observed using the Bid inhibitor BI6C9. Interestingly, Bid-deficient cells were dramatically protected from apoptosis when subtoxic concentrations of ER stressors, Etoposide or Oxaliplatin were combined with subtoxic TRAIL concentrations. Conclusions/Significance: Our data demonstrate that Bid is central for death receptor-induced cell death and participates in anti-cancer drug-induced apoptosis in human cervical cancer HeLa cells. They also show that the synergistic effects of TRAIL in combination with either ER stressors or genotoxic anti-cancer drugs are nearly exclusively mediated via an increased activation of Bid-induced apoptosis signalling

    The Role of Hippocampus in the Pathophysiology of Depression

    Get PDF
    Hippocampus, as a part of the limbic cortex, has a variety of functions ranging from mating behavior to memory besides its role in the regulation of emotions. The hippocampus has reciprocal interactions of with other brain regions which act in the pathophysiology of major depressive disorder (MDD). Moreover, since the hippocampus is a scene for the neurogenesis, which can be seen as a response to antidepressant treatment, the hippocampus became a focus of attention in neuroimaging studies of MDD. It has been shown that brain derived neurotrophic factor (BDNF), that is responsible from the neurogenesis, is associated with the response to the antidepressants and antidepressant drugs are ineffective if neurogenesis is hindered.Hippocampal atrophy is expected with the decrease of neurogenesis as a result of the lower BDNF levels with the deleterious effects of glucocorticoids in depression. Recurrent and severe depression seems to cause such a volume reduction though first episode MDD subjects do not differ from healthy individuals in respect to their hippocampal volumes (HCVs) measured by magnetic resonance imaging methods. One may argue regarding these findings that the atrophy in the hippocampus may be observed in the long term and the decrease in BDNF levels may predispose the volume reduction. Although it has been postulated that smaller HCV as a result of genetic and environmental factors and prior to the illness, may cause a vulnerability to MDD, sufficient evidence has not been accumulated yet and the view that HCV loss develops as depression progresses is widely accepted. Findings that serum BDNF (sBDNF) is lower in MDD patients though HCVs of patients do not differ from healthy individuals and the positive correlation of sBDNF with HCV seen only in the patient group support this view. It can be assumed that depressed patients have sensitivity for the fluctuations in BDNF levels. Follow-up studies which consider effects of hipotalamo-pituiter-adrenal axis dysregulation and monoamine systems are needed to further elucidate the role of BDNF in the pathogenesis of MDD. Results of these studies may lead the way for the treatment of resistant or recurrent depressive disorder

    Possibilitats d'ampliar el ventall d'espècies de bolets cultivables: estudis sobre la múrgola

    Get PDF
    En el present estudi es mostra la importància i l'estat de la recerca sobre el cultiu de la múrgola (Morchella sp.) com a una de les possibilitats d'ampliar el ventall actual de les espècies de bolets cultivables. Es parteix d'una visió global sobre la importància de la fungicultura i el cultiu de bolets com a activitat dintre el sector agrícola. Seguidament, es fa una revisió de la informació publicada sobre la múrgola i el seu cultiu. També es mostren les diferents experiències dutes a terme a l'Escola Superior d'Agricultura de Barcelona (ESAB) en la línia de recerca iniciada sobre el cultiu de bolets. Finalment, es fa una anàlisi crítica sobre les expectatives que desperta la fungicultura, sobre la recerca realitzada a l'ESAB i sobre les possibilitats futures de desenvolupar-hi noves línies de recerca en fungicultura.The present study shows the importance and «state of the art» of research on the cultivation of morels (Morchella sp.) as one of the possibilities of enlarging the number of edible fungus species in current culture. After a general view on the importance of mushroom growing in agriculture, we review the publications on morels and their cultivation. We also show the different experiences carried out at the «Escola Superior d'Agricultura de Barcelona» (ESAB) on morel mushroom growing. Finally, we make a critical review on prospective fungiculture, on the research developed at the ESAB and on possibilities of new research unes on fungiculture in the mentioned University centre.En el presente estudio se muestra la importancia y el estado de los estudios sobre el cultivo de las colmenillas (Morchella sp.) como una de las posibilidades de ampliar la actual gama de especies de setas cultivables. Se parte de una visión global sobre la importancia del cultivo de setas como actividad dentro del sector agrícola, para seguir con una revisión de la información publicada sobre las colmenillas y su cultivo. Se exponen las distintas experiencias que se han llevado a cabo en la «Escola Superior d'Agricultura de Barcelona» (ESAB) en la línea de investigación iniciada sobre el cultivo de setas y finalmente, se hace un análisis crítico sobre las espectativas que despierta la fungicultura, sobre la investigación realizada en la ESAB y sobre las posibilidades futuras de desarrollar nuevas líneas de investigación

    Stress-tolerant Wild Plants: a Source of Knowledge and Biotechnological Tools for the Genetic Improvement of Stress Tolerance in Crop Plants

    Get PDF
    Over the next few decades we must boost crop productivity if we are to feed a growing world population, which will reach more than 9×109 people by 2050; and we should do it in the frame of a sustainable agriculture, with an increasing scarcity of new arable land and of water for irrigation. For all important crops, average yields are only a fraction-somewhere between 20% and 50%-of record yields; these losses are mostly due to drought and high soil salinity, environmental conditions which will worsen in many regions because of global climate change. Therefore, the simplest way to increase agricultural productivity would be to improve the abiotic stress tolerance of crops. Considering the limitations of traditional plant breeding, the most promising strategy to achieve this goal will rely on the generation of transgenic plants expressing genes conferring tolerance. However, advances using this approach have been slow, since it requires a deep understanding of the mechanisms of plant stress tolerance, which are still largely unknown. Paradoxically, most studies on the responses of plants to abiotic stress have been performed using stress-sensitive species-such as Arabidopsis thaliana-although there are plants (halophytes, gypsophytes, xerophytes) adapted to extremely harsh environmental conditions in their natural habitats. We propose these wild stress-tolerant species as more suitable models to investigate these mechanisms, as well as a possible source of biotechnological tools (‘stress tolerance’ genes, stress-inducible promoters) for the genetic engineering of stress tolerance in crop plants
    corecore