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S U M M A R Y
Seismic surface waves can be measured by deploying an array of seismometers on the surface
of the earth. The goal of such measurement surveys is, usually, to estimate the velocity of
propagation and the direction of arrival of the seismic waves. In this paper, we address the
issue of sensor placement for the analysis of seismic surface waves from ambient vibration
wavefields. First, we explain in detail how the array geometry affects the mean-squared
estimation error of parameters of interest, such as the velocity and direction of propagation,
both at low and high signal-to-noise ratios (SNRs). Secondly, we propose a cost function
suitable for the design of the array geometry with particular focus on the estimation of the
wavenumber of both Love and Rayleigh waves. Thirdly, we present and compare several
computational approaches to minimize the proposed cost function. Numerical experiments
verify the effectiveness of our cost function and resulting array geometry designs, leading to
greatly improved estimation performance in comparison to arbitrary array geometries, both at
low and high SNR levels.
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1 I N T RO D U C T I O N

Sensor arrays are used in numerous applications, including radar,
underwater source location, astronomical imaging and geophysical
surveying. Since the geometry of the sensor array has a major impact
on the performance of the array processing system, the design of
optimal array geometries is an important task in many applications
(Tokimatsu 1997; Van Trees 2002).

The motivation of this work arises from the analysis of seismic
surface waves. In particular, our interest lies in the analysis of
ambient vibrations from array recordings. Ambient vibrations span
a broad range of frequencies and may have natural or anthropic
origin (Bonnefoy-Claudet et al. 2006). Properties of the wavefield,
such as the velocity of propagation and polarization, are used to infer
a structural model for the site. This has application in microzonation
and in geotechnical investigations (Tokimatsu 1997; Okada 2006).

The wavefield of ambient vibrations is primarily composed of
Love and Rayleigh waves. Array recordings of ambient vibrations
are used to estimate the dispersion curve, i.e., the relationship be-
tween the velocity and frequency, of such waves.

Fig. 1(a) shows the location and the geometry of an array deployed
by the Swiss Seismological Service near Brigerbad, in southwestern
Switzerland. In this survey, the ground displacement produced by
ambient vibrations is recorded for around two hours. A maximum
likelihood (ML) method is used to estimate the wavenumbers of
Love and Rayleigh waves. Additional details concerning the survey

and the processing are given in Maranò et al. (2012). Fig. 1(b)
depicts a large number of ML estimates of the wavenumber of
Rayleigh waves at different frequencies. Darker regions indicate the
presence of several wavenumber estimates having the same value.
The dark curve extending across the whole figure, from bottom-
left to top-right, identifies the dispersion curve of the fundamental
mode. The first higher mode is also visible between 8 and 12 Hz,
just below the fundamental mode.

An ML estimator suffers from two distinct types of errors, namely,
gross errors (also known as global errors or outliers) and fine errors
(also known as local errors; Vertatschitsch & Haykin 1991; Athley
2005). Both types of errors are influenced by array geometry. At
low signal-to-noise ratio (SNR), the presence of local maxima in
the likelihood function (LF) leads to large estimation errors. At
high SNR, errors are smaller and accumulate around the global
maximum of the LF.

In Fig. 1(b), it is possible to see that, towards higher frequencies
and larger wavenumber, there is a significant amount of wavenumber
estimates that do not belong to the dispersion curve. These are the
gross errors or outliers. On the other hand, the thickness of the
dispersion curve is related to fine errors, i.e., the variance of the
estimator at high SNRs.

Using sensor arrays to study seismic wavefields has a long history
and several different array geometries have been used. In Horike
(1985), L-shaped and cross-shaped arrays with a regular sensor
spacing have been employed. Irregularly spaced crosses were used
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Figure 1. Array deployment and Rayleigh wave dispersion curve from the Brigerbad survey. (a) Geometry of the sensor array. The inlet pinpoints the location
of the array within Switzerland. The geographic coordinates are Swiss coordinates (CH1903). (b) Rayleigh wave dispersion curve. Fundamental mode and first
higher mode are visible.

in Asten & Henstridge (1984), Milana et al. (1996), Ohori et al.
(2002) and Rost & Thomas (2002). In other works, sensors were
arranged as several triangles centred around a common point (Satoh
et al. 2001a,b). In Gaffet et al. (1998) and Cornou et al. (2003),
concentric circles were used.

The limitations of different array geometries have been inves-
tigated by different authors. In particular, the interest has been to
identify a range of wavenumbers, or a related quantity, such as ve-
locity or slowness, where the result of the array processing is more
reliable. The largest and the smallest resolvable wavenumbers have
been related either to the array aperture and the smallest interstation
distance or to the height of the sidelobes of the array response func-
tion (Woods & Lintz 1973; Asten & Henstridge 1984; Tokimatsu
1997; Kind et al. 2005; Wathelet et al. 2008; Poggi & Fäh 2010).

The design of array geometries for the analysis of ambient vi-
brations has also been investigated by the community. Qualitative
guidelines, based on empirical evidences, for array design are pro-
vided in Rost & Thomas (2002) and Kind et al. (2005). Haubrich
(1968) proposes an approach for array design by considering prop-
erties of the coarray.

In this work, we present quantitative criteria and computational
procedures for designing array geometries for measuring ambient
vibrations. Our goal is to improve the performance of the ML esti-
mator of wavefield parameters by optimizing the sensor positions.
Given the nature of ambient vibrations and that we mostly rely on
very noisy measurements, we are mainly interested in the low SNR
regime, focusing primarily on reducing the occurrence of gross er-
rors. In addition, we deal with small-scale arrays deployed at the
earth surface, and thus optimize the geometry of a planar array,
given a budget on the number of sensors and indication about the
frequency support of the signals.

The contributions of this paper are threefold:

(1) We rigorously derive the relationship between array geometry
and errors in parameter estimations. We show how the shape of
the average LF is related to sensor positions through the Fourier
transform of the sampling pattern.

(2) We propose a quantitative design criterion for improving es-
timation performance by means of sensor placement. By reformu-
lating and relaxing the proposed optimization problem, we propose
a practical array design algorithm based on a mixed integer pro-
gram (MIP) with linear objective function and linear constraints.

The proposed sensor placement algorithm generates arrays com-
posed of simple regular geometries and are thus suitable for field
deployment.

(3) We compare the proposed sensor placement algorithm with
several other optimization techniques both in terms of array design
and of estimation performance. We show through numerical exper-
iments how the estimation performance can be increased by using
the proposed array design criterion and algorithm.

The rest of this paper is organized as follows. In Section 2, wave
equations, measurement model and an estimation method are pre-
sented. The distinction between gross and fine errors, together with
a rigourous derivation of the relationship between sensor position
and LF are given in Section 3. In Section 4, we outline the quanti-
ties relevant to the sensor placement problem and propose a design
criterion. In Section 5, we consider array design methods and, in
Section 6, we compare the results of different techniques. The find-
ings of the paper are summarized in Section 7.

2 S Y S T E M M O D E L

Seismic surface waves propagate along the surface of the earth
(Aki & Richards 1980) and can be measured using an array of
seismometers. In seismic surveying, a typical goal is to estimate the
velocity of propagation and the direction of arrival of such waves.

In this section, we briefly describe the model for seismic sur-
face waves, the noise model for sensor measurements and the ML
approach to parameter estimation.

Notation: The vector θ indicates a generic value of the wavefield
parameters. The vector θ̆ indicates the true, and possibly unknown,
wavefield parameters. The vector θ̂ indicates an estimate of θ̆. The
same convention is used for each element of the wavefield param-
eter vector. When necessary, a superscript will specify whether the
parameter vector describes a Love wave or a Rayleigh wave, i.e.,
θ(L) and θ(R), respectively.

2.1 Seismic surface waves

The perturbation induced on a ground particle by a seismic wave
is described by a vector quantity. For a monochromatic, plane Love
wave with frequency ω, the vector particle motion u = (ux, uy, uz)T
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is expressed as a function of location p and time t by

ux(p, t) = −α sin ψ cos(ωt − κ · p + ϕ)

uy(p, t) = α cos ψ cos(ωt − κ · p + ϕ)

uz(p, t) = 0 , (1)

where ψ gives the direction of propagation, κ = κ(cos ψ, sin ψ)T =
(κx, κy)T is the wave vector, κ being the wavenumber. The quan-
tities α and ϕ relate to the amplitude and phase of the wave. We
use a right-handed Cartesian coordinate system having the z-axis
pointing upwards. The velocity of propagation is ω/κ. The az-
imuth ψ is measured counterclockwise from the x-axis. We say
that a Love wave is parametrized by a wavefield parameter vector
θ(L) = (α, ϕ, κ, ψ)T.

For a monochromatic, plane Rayleigh wave with frequency ω,
the vector particle motion u is

ux(p, t) = α sin ξ cos ψ cos(ωt − κ · p + ϕ)

uy(p, t) = α sin ξ sin ψ cos(ωt − κ · p + ϕ)

uz(p, t) = α cos ξ cos(ωt − κ · p + π/2 + ϕ) . (2)

The angle ξ ∈ [−π/2, π/2) is called ellipticity angle of the Rayleigh
wave and determines the eccentricity and the sense of rotation of
the particle motion. The quantity |tan ξ| is known as the ellipticity
of the Rayleigh wave. See Maranò et al. (2012) for a detailed de-
scription of this parametrization. A Rayleigh wave is parametrized
by a wavefield parameter vector θ(R) = (α,ϕ, κ, ψ, ξ)T.

2.2 Scalar plane wave

We also consider a simpler scalar wave model. This model will be
used in parts of this paper to introduce certain ideas before extending
them to Love and Rayleigh wave models.

Let u(p, t) denote the scalar value of the wavefield at position
p and time t. For a monochromatic source at frequency ω, the
wavefield is

u(p, t) = α0 cos(ωt − κ · p + ϕ0) . (3)

Suitable parametrization of α0 and ϕ0 makes the scalar wave model
equivalent to a given component of a vector wave model as given
in (1) or (2).

2.3 Measurement model

To measure seismic waves, we deploy an array of Ns sensors on the
surface of the earth positioned at locations {pn}n=1,...,Ns . We restrict
our interest to small aperture arrays and work with a flat earth model,
thus consider planar arrays. The signal at each sensor component is
sampled at K instants {tk}k=1,...,K . In general, each sensor measures
a vector quantity. Let L be the total number of channels recorded by
the array. In the case of scalar sensors, then simply L = Ns.

Each measurement Y
(	)

k is corrupted by additive white Gaussian
noise and is modelled as

Y
(	)

k = u
(	)
k (θ) + Z

(	)
k , (4)

for each channel 	 = 1, . . . , L, where Z
(	)
k ∼ N (0, σ2

	 ). The noise
variance, σ2

	 is, in general, different on each channel. The quantities
u

(	)
k (θ) are deterministic functions of wavefield parameters θ as

described in (1)–(3).

It follows that the joint probability density function (PDF) of the
measurements is

pY (y|θ) =
L∏

	=1

K∏
k=1

1√
2πσ2

	

exp

(
− (y(	)

k − u
(	)
k (θ))2

2σ2
	

)
, (5)

where we grouped the measurements as Y = {Y (	)
k } 	=1,...L

k=1,...,K
.

2.4 Parameter estimation

Wavefield parameters can be found by using ML estimation. ML
estimation is a useful method for estimating the parameters of a
statistical model. It is a widely used estimation technique due to its
broad applicability and to the optimal performances in many settings
(Kay 1993). An implementation of this method for the estimation
of wavefield parameters of surface waves has been proposed by
Maranò et al. (2012).

The LF of the observations is obtained from the PDF of the
measurements (5). We denote the LF by pY (ỹ|θ), where ỹ are
the observations and θ is the vector of the wavefield parameters
argument of the LF. We stress that the LF is a function of the model
parameters θ while the measurements ỹ are fixed.

An ML estimate θ̂ of the true wavefield parameters θ̆ is found by
maximizing the LF, i.e.,

θ̂ = argmax
θ

pY (ỹ|θ) . (6)

The LF can be thought of as a utility function which is legitimized
by the statistical model of the observations. The point of maximum
of the LF corresponds to the ML estimate of the parameters.

3 S O U RC E S O F E R RO R

In this section, we describe in detail how the sensor positions affect
the performance of the ML parameter estimation. We make a dis-
tinction between two types of errors: gross errors and fine errors.
Array geometry affects both types of error.

Fig. 2 shows the typical behaviour of the mean-squared estima-
tion error (MSEE) of an ML estimator. The figure is obtained by
repeating the estimation of the wavenumber of an unknown wave
with several different noise realization and for different SNRs. The

Figure 2. An example of the MSEE of a ML estimator. The MSEE is
depicted with a blue dashed line. In the no information region the MSEE is
very large and constrained by the implementation of the algorithm. In the
threshold region, the occurrence of outliers keep the MSEE significantly
larger than the Cramér–Rao bound (CRB). At last, in the asymptotic region,
the MSEE is well described by the CRB, which is shown with the black
dashed line.
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figure should be understood as a qualitative depiction of how the
MSEE decreases for increasing SNR. The SNR is defined as the
ratio of signal power over noise power, i.e., SNR = α2

0/2σ2. Three
operation regions of the estimator are recognized at different SNR
ranges. The approximate extent of the regions is shown in Fig. 2.
At very low SNR, the noise dominates the signal of interest, and
this is called the no information region. In this region, the estimates
are completely random and carry no information about the value of
the parameter estimated. At larger SNR, there is a region called the
threshold region. In this region, the estimated value may be often
close to the true value; however, the MSEE is still considerably large
as gross estimation errors occur. Gross estimation errors are also
known as global errors or outliers. Further increasing the SNR, we
approach the asymptotic region. Fine estimation error occurs in this
region and the MSEE of an ML estimator is well described by the
Cramér–Rao bound (CRB; Kay 1993). Fine estimation errors are
also known as local errors.

The abrupt increase in the MSEE below a certain SNR is known
in literature as the threshold effect (or threshold phenomenon) and
is due to a transition from fine errors to gross errors (Kay 1993; Van
Trees 2001; Athley 2005).

3.1 Gross errors

Gross errors are due to the presence of local maxima (sidelobes)
other than the true maximum in the LF. In this section, we establish
the relationship between the LF and the array geometry.

Consider an array of Ns sensors at positions {pn}n=1,...,Ns . The
spatial sampling pattern is given by a sum of Dirac delta located at
the sensor positions

h(x, y) =
Ns∑

n=1

δ(p − pn) . (7)

Its Fourier transform is given by

H(κx, κy) =
∫

R2
h(x, y)e−i(κx,κy ) · pdp (8)

=
Ns∑

n=1

e−i(κx, κy ) · pn , (9)

where κx and κy are the wavenumber along the x and y coordinate
axes, respectively.

We will show that H(κx, κy) is important to explain the occurrence
of gross errors and to establish a strategy to mitigate them.

It is possible to verify that the function |H(κx, κy)| always exhibits
a global maximum at (κx, κy) = (0, 0). Other maxima also exist
but, in general, have smaller amplitude. Moreover, the function is
symmetric around the origin, i.e., |H(κx, κy)| = |H(−κx, −κy)|.

Similarly, the temporal sampling pattern g and its Fourier trans-
form G are given by

g(t) =
K∑

k=1

δ(t − tk), (10)

G(ω) =
∫

R

g(t)e−iωtdt =
K∑

k=1

e−iωtk , (11)

where {tk}k = 1, . . . , K are the sampling times.
After introducing these quantities, we return to our main interest,

i.e. the analysis of the shape of the LF. To this aim, we compute the
expectation of the LF from the model of (5).

We consider the observations ỹ of a single scalar wave (cf. (3))
with true wavefield parameter vector θ̆ = (ᾰ0, ϕ̆0, κ̆, ψ̆)T. We note
that the ML estimates of ᾰ0 and ϕ̆0 can be found explicitly as
a function of the observations ỹ and of the wave vector κ (see
Appendix A1 for analytic expressions). Consequently, we can sim-
plify the LF of the observations as a function of only κ, as

pY (ỹ|κ) = max
α0,ϕ0

pY (ỹ|θ) . (12)

The maximization is achieved by inserting into pY (ỹ|θ) the ML
estimates α̂0 and ϕ̂0 (see Appendix A1 for more details).

Since we are interested only in the shape of the LF, we compute
its logarithm, and drop multiplicative and additive constants. We
use the expectation operator E{·} to obtain an indication about the
average shape of the LF. After some manipulations, explained in
detail in Appendix A1, we obtain

E {ln(pY (y|κ))} ∝ |G(ω − ω̆)H(κ − κ̆)|2 , (13)

where the symbol ∝ denotes equality up to an affine transform,
i.e., f (x) ∝ g(x) if f (x) = C1g (x) + C2 and C1, C2 do not depend
on x. From (13), we understand that the average shape of the log-
likelihood function (LLF) is related to a translation of the Fourier
transform of the sampling pattern.

The quantity G(·) is of marginal importance concerning the oc-
currence of gross errors. Indeed, it is usually possible to sample
the signal with sufficiently small sampling time and with enough
samples. We observe that for ω exactly known, G(ω − ω̆) = G(0)
is a real constant and thus does not change the shape of the LF.
Hereafter, we will omit the factor G(·).

The quantity |H(κ)|, or quantities closely related to it, is known
in literature with several names, such as array response (Woods
& Lintz 1973; Asten & Henstridge 1984; Rost & Thomas 2002;
Van Trees 2002; Wathelet et al. 2008), array factor (Bevelacqua &
Balanis 2007) and array transfer function (Gaffet et al. 1998).

It is now clear how the Fourier transform of the sampling pattern
H(κ) affects the shape of the LF. At low SNR, outliers tend to
accumulate around the local maxima of |H(κ)|. In order to reduce
the occurrence of the gross errors, it is necessary to reduce the
height of the local maxima (Vertatschitsch & Haykin 1991; Athley
2005).

As mentioned in the previous section, seismic waves are mea-
sured and modelled as vector quantities. Therefore, it is necessary
to extend the findings concerning gross errors obtained for the scalar
wave case to the vector wave case.

When considering vector measurements, the PDF of the observa-
tions needs to be augmented with the contribution of all the sensor
components. With the assumption of independent observations, this
is achieved by increasing L in (5) and by choosing the appropriate
wave model u

(	)
k .

Concerning gross errors, the shape of the LF of observations of
Love and Rayleigh waves is influenced differently by the different
components of each sensor but remains a function of the Fourier
transform of the sampling pattern H(κ). The derivation of this re-
lationships are detailed in Appendix A2 and in this section we only
present the final results.

3.1.1 Love wave

For Love waves as in (1), the LLF is related to H as

E {ln(pY (y|κ, ψ))} ∝ fL(ψ, ψ̆) |H(κ − κ̆)|2 , (14)
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where

fL(ψ, ψ̆) = cos2(ψ − ψ̆) . (15)

From the previous expressions it is possible to understand that,
similar to the scalar wave setting, the LLF for Love waves is directly
related to the Fourier transform of the sampling pattern. The factor
fL(ψ, ψ̆) influences the shape of the LLF as a function of the azimuth
ψ and the true azimuth of the wave ψ̆.

3.1.2 Rayleigh wave

For Rayleigh waves as in (2), the LLF is related to H as

E {ln(pY (y|κ, ψ, ξ))} ∝ fR(ψ, ψ̆, ξ, ξ̆) |H(κ − κ̆)|2 , (16)

where

fR(ψ, ψ̆, ξ, ξ̆) = (
sin ξ sin ξ̆ cos(ψ − ψ̆) + cos ξ cos ξ̆

)2
. (17)

We observe that for a fixed ellipticity angle ξ, the relationship is
similar to the Love wave setting. For fixed azimuth ψ and wavenum-
ber κ, the occurrence of local maxima is described by trigonometric
functions of ξ. We observe that the local maxima due to (17) are
independent of the sensor positions and, therefore, are outside the
scope of this work.

3.2 Fine errors

At high SNR, the performance of the ML estimator is well described
by the CRB. The CRB is a lower bound on the variance of all
unbiased estimators. For example, Fig. 2 shows how the MSEE
matches the CRB in the asymptotic region.

To compute the CRB, we first need to introduce the notion of
Fisher information (FI). The FI conveys the amount of information
about a statistical parameter carried by the PDF of the observations
(Kay 1993).

For a statistical model with multiple parameters, the FI matrix
(FIM) is given by

I(θ) = E

{
−∂2 ln pY (y|θ)

∂θ2

}
, (18)

where pY (y|θ) may be exactly (5). The matrix I is a square sym-
metric matrix with as many columns as the elements in the vector
θ. The diagonal terms of the matrix correspond to the FI of each
parameter in the parameter vector θ. These elements should be in-
terpreted with care, as they disregard the uncertainty due to the
other model parameters being unknown. The off-diagonal terms are
sometimes referred to as cross-information terms.

The information inequality states that the MSEE of an unbiased
estimator is lower bounded as

E{(θ̂ − E{θ̂})(θ̂ − E{θ̂})T } � (I(θ))−1 , (19)

where A � B means that the matrix A − B is positive semi-definite
(Kay 1993). The left-hand side of (19) represents the covariance
matrix of the vector θ̂ and the right-hand side is the matrix inverse
of the FIM. Following the information inequality, we are interested
in the diagonal elements of I−1 as they provide a lower bound on
the MSEEs of the corresponding parameters.

The CRB on wavenumber for the scalar wave model is obtained
using (3) and (5). The FIM is derived and then inverted analytically
as in (18) and (19). From the corresponding entry of I−1, the MSEE

of wavenumber is lower bounded as

E
{
(κ̂ − E{κ̂})2

} ≥
(

α2
0K

2σ2

(
Qaa(ψ) − Q2

ab(ψ)

Qbb(ψ)

))−1

. (20)

The CRB is directly proportional to noise power σ2, inversely pro-
portional to the amplitude of the wave α0 and to the number of
samples K. The CRB depends on the sensor positions through Qaa,
Qbb and Qab. We also observe that the wavenumber CRB is inde-
pendent of the temporal frequency ω, thus we expect fine errors to
have comparable variance at any frequency.

The quantities Qaa, Qbb and Qab are called moment of inertia of
the array. These quantities are independent of array translations,
but are in general dependent on the azimuth. We introduce the
coordinate system (a, b), which is related to the coordinate system
(x, y) as(

a
b

)
=

(
cos ψ sin ψ

− sin ψ cos ψ

)(
x
y

)
, (21)

where the angle of rotation is the azimuth ψ. Therefore, a is the
axis along the direction of propagation of the wave and b the axis
perpendicular to it. The sensor positions in the rotated coordinate
system are {(an, bn)}n=1,...,Ns . The moment of inertia (MOI) of the
array in the coordinate system (a, b) are defined as

Qaa(ψ) =
Ns∑

n=1

(an − ā)2, (22)

Qbb(ψ) =
Ns∑

n=1

(bn − b̄)2, (23)

Qab(ψ) =
Ns∑

n=1

(an − ā)(bn − b̄) , (24)

where ā = 1
Ns

∑Ns
n=1 an and b̄ = 1

Ns

∑Ns
n=1 bn define the phase centre

of the array (Dogandz̆ić & Nehorai 2001).
With reference to the CRB in (20), large Qaa and Qbb are desirable

in order to reduce the CRB and thus the MSEE in the asymptotic
region. Also a small Q2

ab is advantageous.
A large Qaa can in general be obtained with a large aperture

array. However, observe that a large aperture may invalidate the
plane wave assumption, which is of critical importance in practical
applications. Moreover, it is possible to choose an array geometry
such that Qab = 0 and thus eliminating the term −Q2

ab/Qbb from
(20).

3.2.1 Love wave and Rayleigh wave

In the vector case, the derivation of the CRB in Section 3.2 needs
to be extended. However, for translational sensors the dependence
of the CRB on array geometry remain similar to the one presented
in (20) and, therefore, we do not review this aspect. A detailed
analysis of the CRB of parameters of Love wave and Rayleigh wave
measured with translational and/or rotational sensors is found in
Maranò & Fäh (2014).

4 P RO B L E M S TAT E M E N T A N D D E S I G N
C R I T E R I O N

The aim of sensor placement is to improve the performance of pa-
rameter estimation, by an appropriate choice of the array geometry.
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In particular, we consider the setting where two design requirements
are given:

(1) A budget of Ns sensors to be placed on a plane surface.
(2) An indication about the spatial bandwidth of the signals of

interest.

In several applications, only a limited number of sensors is available.
This is often the case for the analysis of seismic wavefields where
each individual instrument can be quite expensive and/or difficult
to install at the measurement site.

Spatial bandwidth is defined by the spatial frequency content
of the wavefield. Particularly important is the largest wavenumber
present in the wavefield, denoted by κmax. Knowledge of spatial
bandwidth is a reasonable assumption in many applications. In the
seismic case, the wavenumber is the goal of the estimation process
and thus an exact knowledge of the signal bandwidth is not available.
However, prior knowledge on the geology of the site or previous
surveys may lead to a rough estimate of κmax and thus the spatial
bandwidth of the signal.

We have seen that two different criteria applies at low and high
SNR in order to reduce gross errors and fine errors, respectively. At
low SNR, array design focuses on the design of the LF in order to
reduce the height of local maxima and thus the occurrence of gross
errors. We have shown how the Fourier transform of the spatial
sampling pattern H(κ) plays a central role in understanding the
shape of the LF. At high SNR, array design targets the reduction of
fine errors. This can be achieved by designing an array geometry
that reduces the CRB in (20).

4.1 Reduction of gross errors

It is shown in the literature that the probability of occurrence of
gross errors is related to the amplitude of the local maxima relative
to the true maximum, see, for example, Athley (2005). Therefore, in
order to decrease gross errors it is necessary to reduce the amplitude
of local maxima of the LF over a certain region of the κx κy-plane.
We choose this region as an annulus defined by κmin and 2κmax, i.e.,
the region bounded by two concentric circles with radii κmin and
2κmax, respectively. We now explain the rationale behind this design
choice.

The circular symmetry of the considered region is motivated by
the final application, the analysis of ambient vibration wavefields.
In particular, by the fact that seismic waves may traverse the array
of sensors from any direction-of-arrival (DOA).

We choose a value of κmin related to the smallest spacing, in the
κx κy-plane, between two signals that we wish to resolve. The small-
est spacing between two resolvable signals is known in literature as
the Rayleigh resolution limit (Van Trees 2001). The exact Rayleigh
resolution limit can be computed from a given sampling pattern and
it is in general slightly different from κmin. In practice, the quantity
κmin is also related to the smallest wavenumber that can be reliably
estimated in field measurements.

We recall that the LF is related to the Fourier transform of the
sampling pattern H(κ) through a translation as in (13). We also
observe that the ML estimate of the wave vector is found as the
largest value of the LF in a disk of radius κmax centred in the origin.
A geometrical argument suggests that, in order to reduce gross
errors, it is necessary to reduce the height of the local maxima of
|H(κ)| in a disk of radius 2κmax.

We illustrate this argument with an example. In Fig. 3, we show
graphically how the LF is related to a translation of the Fourier

Figure 3. Illustration of the relationship between the magnitude of the
Fourier transform of the sampling pattern and expected log-likelihood func-
tions (LLFs) of different waves. Colours towards red (blue) represent large
(small) values. In (a) the magnitude of the Fourier transform of an optimized
sampling pattern is shown. The two magenta circles of radii κmin and 2κmax

limit the region where the local maxima need to be reduced. The highlighted
disks in (b)–(d) depict the LLFs of the same array for different incoming
waves. See text for a detailed explanation. (a) Fourier transform of an opti-
mized sampling pattern. (b) Expected LLF, κ̆ = (0.5, 0). (c) Expected LLF,
κ̆ = (1, 0). (d) Expected LLF, κ̆ = (1.5, 0).

transform of the sampling pattern. Fig. 3(a) shows the magnitude of
the Fourier transform of an optimized sampling pattern (the array
layout is not shown). The two magenta circles have radii κmin and
2κmax, respectively. In this example κmin = 1/4 and κmax = 1. We
observe the presence of the global maximum at (0, 0) inside the
inner circle, that the local maxima in the annulus region are small
in amplitude and that outside the outer ring there are several local
maxima with large amplitude.

Fig. 3(b) depicts the expected LLF of a wave with wavenumber
κ̆ = (0.5, 0) as a highlighted disk of radius κmax = 1. Colours to-
wards red represent high likelihood and colours towards blue low
likelihood. The global maxima of the expected LLF is located at
(0.5, 0). Observe that the shaded region of Fig. 3(b) is exactly
the Fourier transform of the sampling pattern shown in Fig. 3(a).
Fig. 3(c) depicts the expected LLF of a wave with wavenumber
κ̆ = (1, 0). This wave has the largest admissible wavenumber since
‖κ̆‖ = κmax and, therefore, the maxima of the LLF lies at the edge
of the parameter space. Fig. 3(d) depicts the expected LLF of a wave
with wavenumber κ̆ = (1.5, 0). This wave has a wavenumber larger
than what was assumed for the array design since ‖κ̆‖ > κmax. The
global maximum of the expected LLF corresponds to a local max-
ima of |H(κ)| outside the minimization region. As results, the ML
estimate of the wave vector is not corresponding to the true wave
vector.

We formulate the following minimization program, aimed at
minimizing the largest value of |H(κ)| over the annulus defined
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by κmin ≤ ‖κ‖2 ≤ 2κmax as

min
p1,p2,...,pNs

max
κ

∣∣H(κ, p1, p2, . . . ,pNs
)
∣∣ (25a)

s.t. κmin ≤ ‖κ‖2 ≤ 2κmax , (25b)

where we emphasized the dependence of H on sensor positions.
In this optimization problem, the minimization variables are the
sensor positions {pn}n=1,...,Ns . The target of the minimization,
maxκ |H(κ, p1, p2, . . . ,pNs

)|, is a function of the sensor positions.
To the best of our knowledge, the use of such cost function is new
to the seismological community.

This minimization problem becomes harder as the extent of the
annulus is increased. In particular, we observe that large values of
the ratio κmax/κmin lead to harder optimization problems.

4.2 Reduction of fine errors

Fine errors can be reduced by decreasing the CRB. The CRB de-
rived in (20) depends on sensor positions {pn}n=1,...,Ns and on the
azimuth ψ. Indeed, in general, different MSEE values are expected
for different DOAs of the incoming wave.

We choose to maximize the inverse of the CRB for the DOA
leading to the worst performance

max
p1,p2,...,pNs

min
ψ

(
Qaa(ψ,p1, . . . ,pNs

) − Q2
ab(ψ,p1, . . .)

Qbb(ψ,p1, . . .)

)
. (26)

Such maximization problem is unbounded. Indeed, it is possible to
verify that a uniform circular array (UCA) with sufficiently large
radius can make the objective function arbitrarily large. Moreover,
an array with a very large aperture could void the assumption of
planar wave fronts.

4.3 Discussion

Elaborating on the two distinct sources of errors discussed in Section
3, we showed how two different sensor placement criteria exist.
Depending on the application, interest may lie in reducing one or the
other type of error. It is also possible to combine both optimization
problems (25) and (26) in order to account for both types of errors.

We emphasize that the choice of performing the analysis in the
wavenumber domain is important since it allows us to disregard the
temporal frequency ω. Indeed, the conclusions drawn in this section
are independent of the temporal frequency and the proposed design
criteria are valid at every frequency.

The findings in this section are in general applicable to beam-
forming methods. The conditions for the equivalence between the
ML estimation method and classical beamforming are stated in
Reller et al. (2011).

For ambient vibration wavefields, typically the waves have very
small amplitudes compared to the level of the background noise.
Therefore, we choose to primarily focus on improving performance
at low SNR and thus on the reduction of gross errors.

Although we choose not to address fine errors explicitly, we con-
sider arrays with Qab = 0. This additional constraint is beneficial for
reducing the CRB of (20) and it also ensures that the resulting array
has no preferential DOA, i.e., Qaa(ψ) is equal for every azimuth.

5 A R R AY D E S I G N M E T H O D S

To the best of our knowledge, there is no algorithm with poly-
nomial complexity that can always find the global optimal so-

lution to the program in (25). The objective function (25a) has
many local minima and any solution found by, for example, a
gradient descent method will strongly depend on the initial start-
ing point. In this section, we propose an algorithm using a MIP,
which is shown empirically to be effective. We also compare it with
two other possible approaches addressing the same optimization
problem.

5.1 Mixed integer program

The program in (25) is difficult to solve because the minimization
variables {pn}n=1,...,Ns are arguments of the complex exponentials.
To overcome this limitation, instead of representing the sensor posi-
tions with continuous variables we consider a finite number of pos-
sible sensor positions. We represent the discrete sensor positions
with the binary vector x ∈ {0, 1}N. An analogous minimization
problem in this new variable is

min
x

‖Fx‖∞ (27a)

s.t. Asx = bs (27b)

x ∈ {0, 1}N , (27c)

where ‖v‖∞ = max (|v1|, |v2|, . . . , |vM|).
The vector x is a binary vector representing the presence or

the absence of a sensor at given spatial locations on the plane.
Fig. 4(a) shows a possible choice of N feasible spatial locations for
positioning the Ns available sensors. The linear operator F : R

N →
C

M computes the two-dimensional Fourier transform of the array
positions, restricted to M discrete spatial frequencies of interest.
The operator F can be thought as a discretized version of H(κ). The
M frequencies lie in the annulus defined by κmin ≤ ‖κ‖2 ≤ 2κmax.
Fig. 4(b) shows a possible choice of the M frequencies computed
by F. Observe that because of the symmetry |H(κ)| = |H(−κ)|
the choice of the M frequencies can be limited only to half of the
κx κy-plane.

We choose to arrange both the N possible sensor positions and
and the M spatial frequencies on circles around the origin, as in
Fig. 4. This arbitrary choice is supported by the radial symmetry of
the problem as expressed in (25). Concerning the sensor positions,
this choice also makes it easier to enforce numerically any constraint
on the MOIs.

−0.5 0 0.5
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0.5

−2 −1 0 1 2
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0

1

2

Figure 4. A possible choice of the N spatial locations and of the M spa-
tial frequencies used in the construction of the operator F. (a) Possible N
locations available in the x y-plane for the placement of Ns sensors. (b) Pos-
sible positions of the M spatial frequencies in the κx κy-plane. The magenta
circles depict κmin and 2κmax.
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The equalities in (27b) enforce a number of linear constraints.
The number of sensors is enforced to be equal to Ns. The vector x
has exactly Ns elements equal to one, corresponding to the sensor
positions. The remaining elements are zero. As an extension, using
linear equalities is also possible to enforce the presence or the
absence of a sensor in a specific position.

In (27b), we also enforce the linear constraint Qab = 0. This con-
straint allows to eliminate the term −Q2

ab/Qbb from the expression
of the CRB in (20), thus lowering the CRB. It also ensures that
the array performance, in terms of fine errors, have no preferential
direction, i.e., Qaa and Qbb are constant for every azimuth.

Comparing the original problem in (25) and the discretized for-
mulation in (27), we observe that the discretization of the sensor
positions causes the optimal value of (25) to be smaller than or equal
to the optimal value of (27). This is especially important when the
vector x has small dimension N and the possible sensor positions
are coarse.

Observe that the objective function (27a) is a convex function of
the minimization variable x. However, due to the binary constraint
(27c), the minimization is an integer programming problem. Integer
programs are generally considered to be NP-hard (non-deterministic
polynomial-time hard), i.e., there is no polynomial time algorithm
to solve them.

We relax the optimization problem in (27) to make it more
tractable for implementation. We replace the convex objective func-
tion with a linear objective function as

‖Fx‖∞ →
∥∥∥∥
( |Re Fx|

|Im Fx|
)∥∥∥∥

∞
.

This modification enables us to formulate the problem as a MIP
with linear objective function and linear constraints

min
y

y (28a)

s.t. Asx = bs (28b)⎛
⎜⎜⎜⎜⎜⎝

Re F

Im F

−Re F

−Im F

⎞
⎟⎟⎟⎟⎟⎠ x � 1y (28c)

y ∈ R (28d)

x ∈ {0, 1}N , (28e)

where 1 is a vector of ones of size 4M × 1 and � denotes element-
wise ≤. In this program, there are N binary variables and one con-
tinuous real variable. This can be addressed using general purpose
MIP algorithms (Gurobi Optimization, Inc. 2014). It is in theory
possible to find the optimal solution to (28) using the branch and
bound algorithm (Land & Doig 1960). However, for a large number
of possible sensor positions N, finding the optimal solution becomes
not always practical.

5.2 Genetic algorithm

We also attempt a direct minimization of (25) using genetic algo-
rithm (GA; Goldberg 1989). Such algorithm attempts to find good
solutions using some random search pattern and there is no guaran-
tee to find the optimal solution.

In our implementation, we do not enforce any constraint on the
MOIs. The constraint on the Qab = 0 is non-linear in the variables

{pn}n=1,...,Ns . We do not enforce such constraint in the considered
GA technique since we observed that it makes the minimization
considerably harder.

5.3 Uniform circular array

In addition, we compare with the best UCA. In an UCA, sensors
are uniformly spaced on a ring of radius r. A line search over the
possible r allows us to obtain the radius of the best UCA for given
κmin, κmax and Ns

min
r

max
κ

∣∣H(κ, p1, p2, . . . ,pNs
)
∣∣ (29a)

s.t. pn = r(cos(2πn/Ns), sin(2πn/Ns)) (29b)

κmin ≤ ‖κ‖2 ≤ 2κmax . (29c)

The objective function is the same of the original problem (25).
Sensors are restricted to be uniformly spaced on a circle of radius r.

We observe that all UCA with Ns ≥ 3 have Qab = 0. Moreover,
Qaa and Qbb are constants for all azimuths.

6 N U M E R I C A L R E S U LT S

In this section, we compare the arrays designed using the considered
techniques and we quantify the impact different geometries have on
the estimation problem. In Section 6.1, the outcomes of the different
array design methods are compared in terms of the design criteria
presented in Section 4. In Section 6.2, the estimation performance
achieved using different array layouts is analysed by means of Monte
Carlo simulations.

6.1 Array design

The three array design techniques considered are: (i) the proposed
approach, i.e., the MIP of (28); (ii) the direct minimization of (25)
using a GA; and (iii) the best UCA obtained from the program in
(29).

6.1.1 Gross errors

In terms of sensor design and minimization of the original problem
(25), the goodness of a solution is quantified with the amplitude of
the largest local maxima of |H(κ)| compared to the central maxi-
mum |H(0, 0)|. Therefore, we consider the quantity

Hmax = max
κ

(
|H(κ)|2

N 2
s

)
(30)

for κmin ≤ ‖κ‖2 ≤ 2κmax. Observe that the quantity Hmax is smaller
than or equal to 1, since the largest value of |H(κ)| is Ns.

Fig. 5 shows the value of Hmax achieved with different design
techniques for different number of sensors Ns and κmax/κmin. In
general, the value of Hmax decreases for increasing number of sen-
sors Ns. In particular, such decrease is steeper for few sensors. This
indicates that the marginal benefit of an additional sensor is greater
for few sensors.

Different values of κmax/κmin are also considered. Figs 5(a), (b)
and (c) depict the minimization results for κmax = 1 and κmin equal
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Figure 5. Values of Hmax achieved with different array design strategies for
different number of sensors. Different κmax/κmin are considered. A small
Hmax is desirable in order to reduce the occurrence of gross errors. (a)
κmin = 1/2 and κmax = 1. (b) κmin = 1/4 and κmax = 1. (c) κmin = 1/6
and κmax = 1.

to 1/2, 1/4 and 1/6, respectively. A large value of κmax/κmin cor-
responds to a larger extension of the annulus involved in the mini-
mization. For larger values of κmax/κmin, the minimization problem
is harder and the Hmax values found are indeed larger.

In Fig. 5, we observe that the MIP technique typically achieves
values of Hmax smaller than the other design techniques, for all the
considered κmax/κmin.

The GA technique is able to consistently decrease Hmax for in-
creasing number of sensors. On the contrary, the UCA technique
exhibits, for certain number of sensors, larger Hmax than for fewer

sensors. This behaviour is also observed in the MIP technique, but
to a much smaller extent. The GA solutions are in general worse
than the MIP solutions in terms of Hmax.

In terms of minimization, an intrinsic advantage of the GA tech-
nique is that the minimization variables {pn}n=1,...,Ns are continuous,
this may help the algorithm to optimize the solution, at least
locally. The GA solution presented is the best out of hun-
dreds of runs performed with different initialization of the GA
algorithm.

The UCA’s technique performs similarly or worse than the other
techniques depending on the specific design parameters. We observe
that for κmax/κmin = 2, there is little or no decrease in the value of
Hmax for increasing number of sensors above 10. For κmax/κmin

equals to 4 and 6, the UCA is often largely outperformed by the
other two design techniques.

The MIP technique exhibits Hmax values smaller than the other
techniques in most of the scenarios considered.

6.1.2 Fine errors

At high SNR, the performance of the ML estimator is well charac-
terized by the CRB. From (20) it is clear how the CRB performance
depends on the azimuth. We define the quantity Qmin, related to the
CRB at the azimuth ψ exhibiting the worst performance as

Qmin = min
ψ

(
Qaa(ψ) − Q2

ab(ψ)

Qbb(ψ)

)
. (31)

Note that Qmin is not explicitly taken into account in any of the
strategies considered for array design. However, the MIP and the
UCA geometries are guaranteed to have Qab = 0 for any azimuth.

Fig. 6 depicts the value of Qmin for the same arrays considered in
Fig. 5(b). As expected, the value of Qmin is generally an increasing
function of the number of sensors.

6.1.3 Array geometry

Example array geometries are depicted in Fig. 7. The array geome-
tries obtained for Ns = 14 and κmin = 1/4 with different techniques
are compared together with a representation of the corresponding
|H(κ)|2.

Figure 6. Values of Qmin obtained from different array design strategies for
different number of sensors and κmax/κmin = 4. A large Qmin is desirable
in order to reduce the MSEE at high SNR.
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Figure 7. Array geometries h(x, y) and the corresponding |H(κx, κy)|2.
The arrays are obtained by choosing Ns = 14, κmin = 0.25 and κmax = 1.
The magenta circles delimit the annulus κmin < ‖κ‖2 < 2κmax. (a) Mixed
integer program (MIP) array. (b) Genetic algorithm (GA) array. (c) Uniform
circular array (UCA) array. (d) Spiral array. (e) Cross-array.

The array obtained using the proposed MIP method, in Fig. 7(a),
exhibits symmetry around the origin due to the constraint Qab = 0.
The GA array of Fig. 7(b) exhibit a completely irregular pattern
since the sensor positions are unconstrained. The UCA array is
shown in Fig. 7(c). A spiral-shaped array is shown in Fig. 7(d).
From the large width of the central lobe, a large MSEE at high SNR
is to be expected for the spiral array. A cross-shaped array is shown
in Fig. 7(e). Due to the regular geometry, the cross-array exhibits
many maxima having the same magnitude as the central lobe. In
these two latter arrays, sensor spacings are chosen arbitrarily and
the arrays are not designed to comply with the proposed criteria.

Values of Hmax and Qmin for the arrays shown in Figs 7(a)–(c)
can be found in Figs 5(b) and 6, respectively.

The symmetry of the MIP array and the irregular pattern of the
GA array are also observed for other sensor numbers and values of
κmax/κmin. This fact suggests that the actual deployment in the field
of a MIP array may be significantly easier that the deployment of a
GA array. Additional array layouts obtained with the MIP technique
are shown in Appendix B.

6.1.4 About MIP algorithm execution time

As mentioned in Section 5.1, it is not always practically possible to
find the optimal solution to a MIP problem. For certain choices of
Ns and arrangement of the possible spatial locations, the globally
optimal solution was found. For large Ns and N the algorithm was
often terminated after a given time limit and a suboptimal solution
was considered.

We observed that the quality of the MIP solutions and the time
necessary to find good solutions depend on the choice of the N
possible sensor locations, cf. Fig. 4(a). In particular, we observed
that the number of possible sensor locations on each concentric cir-
cle has to be related to Ns. One reason is that due to the Qab = 0
constraint and the arrangement of the possible sensor locations,
the MIP solutions exhibit sensors placed on concentric circles.
Therefore, certain choices of the number of possible locations on
each circle may turn the MIP problem infeasible, and other choices
may be more convenient. In addition, design requirements with
large Ns or large κmax/κmin required more time.

The actual execution time varied between hours and few tens of
hours. Array design was performed on a machine with 20 cores at
2 GHz.

6.2 Estimator performance

In order to quantify the impact of the different arrays geometry on
the actual estimation problem, we resort to the analysis of the MSEE
using Monte Carlo simulations.

Arrays obtained with the sensor placement techniques considered
in the previous section are compared. Moreover, we compare with an
array having sensors arranged on a spiral and with another array with
sensors arranged on a cross. These two latter arrays are designed
without following the design criterion proposed in this work.

The MSEE is computed as follows. A wave vector is drawn
randomly from the uniform distribution having as support a disk
with radius κmax. For each considered array geometry and SNR,
random noise is added to the wavefield as in (5). The ML estimation
method of Maranò et al. (2012) is used to estimate the parameters
of the wave and the MSEE is obtained by repeating the procedure
3000 times. The MSEEs are also compared with the CRBs.

In Fig. 8, we compare the MSEE of the ML estimate of the
wavenumber for different array geometries. The MIP, GA and UCA
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Figure 8. Comparison of the MSEE of the wavenumber obtained with
different array geometries. The CRBs are also depicted with black thin
dotted lines. (a) Ns = 7. (b) Ns = 14.

arrays are designed with κmax/κmin = 4. In general, the MSEE de-
creases as the SNR increases and it achieves the CRB for sufficiently
large SNR.

Fig. 8(a) shows the MSEE for an array of Ns = 7 sensors. The
MIP, the GA and the UCA exhibit similar performances in the
threshold region. At high SNR, in the asymptotic region, certain ar-
rays perform better than others. We observe how the best performing
arrays are those with larger Qmin, cf. Fig. 6. The spiral array shows
a large MSEE over all the SNR range considered. The cross-array
does not achieve its CRB because the local maxima of the LLF are
indistinguishable from the right maximum. This ambiguity is due
to the regular array geometry, cf. Fig. 7(e).

Fig. 8(b) shows the MSEE for an array of Ns = 14 sensors. The
geometry of these arrays is shown in Fig. 7. The MIP, the GA and
the UCA arrays exhibit similar performance both at low and high
SNR. The spiral array and the cross-array again exhibit the larger
MSEE.

In Fig. 9, the MSEE of the ML estimate of the wavenumber for dif-
ferent array geometries and number of sensors is depicted. Only the
MIP geometries, with κmax/κmin = 4, are considered for different
values of the SNR. As expected, the MSEE decreases when the num-
ber of sensors is increased. For SNR = −25 dB, the MSEE is con-
stantly well above the CRB because the SNR is low and the estimator
operates in the threshold region, thus gross errors occur. For SNR =
−20 dB, the MSEE achieves the CRB for a sufficiently large number
of sensors. At last, a SNR of −15 dB is sufficient for the estimator
to operate in the asymptotic region for any number of sensors.

Figure 9. Comparison of the MSEE of the wavenumber obtained with
different array geometries having a different number of sensors. The CRBs
are also depicted with black thin dotted lines.

In Fig. 9, it is also observed that the marginal benefit of an
additional sensor also depends on the SNR. When the estimator
operates in the asymptotic region (e.g. SNR = −15 dB), most of
the MSEE reduction is achieved with the first 8 sensors. How-
ever, for SNR = −20 dB, the MSEE reduction is still significant
until Ns = 11 because the threshold effect of the estimator. These
considerations may also vary for different κmax/κmin as suggested
by Fig. 5.

7 C O N C LU S I O N S

In this paper, we described in detail the occurrence of gross errors
and fine errors in the estimation of parameters of Love and Rayleigh
waves. We derived a relationship between the Fourier transform of
the sampling pattern and the average LF of the observations. Sensor
placement criteria for the reduction of gross errors and fine errors
are then proposed.

An array design algorithm employing the proposed criterion with
linear objective function and linear constraints is formulated as a
MIP. The proposed algorithm is compared with the GA technique
and with the UCA technique using the same design criterion. The
proposed algorithm achieves superior design for most choices of the
sensor number and spatial frequency requirements. In addition, the
proposed sensor placement algorithm generates arrays composed of
simple regular geometries and are thus suitable for field deployment.

The MSEE of the ML estimator using different array geometries
are compared by means of Monte Carlo simulations. We find that the
proposed design criterion is suitable for the optimized placement of
seismic sensors for the analysis of Love and Rayleigh waves. We
show that the sensor placement techniques considered can greatly
reduce the MSEE when compared with non optimized arrays.

We emphasize that prior knowledge of the spatial frequency sup-
port of the wavefield is useful to design an array able to achieve
better performance. From our findings, we suggest that a minimum
number of around 10 sensors is desirable.
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Maranò, S., Reller, C., Loeliger, H.-A. & Fäh, D., 2012. Seismic waves es-
timation and wavefield decomposition: application to ambient vibrations,
Geophys. J. Int., 191(1), 175–188.

Milana, G., Barba, S., Pezzo, E.D. & Zambonelli, E., 1996. Site response
from ambient noise measurements: new perspectives from an array study
in central Italy, Bull. seism. Soc. Am., 86, 320–328.

Ohori, M., Nobata, A. & Wakamatsu, K., 2002. A comparison of ESAC
and FK methods of estimating phase velocity using arbitrarily shaped
microtremor arrays, Bull. seism. Soc. Am., 92(6), 2323–2332.

Okada, H., 2006. Theory of efficient array observations of microtremors
with special reference to the SPAC method, Explor. Geophys., 37, 73–
85.

Poggi, V. & Fäh, D., 2010. Estimating Rayleigh wave particle motion from
three-component array analysis of ambient vibrations, Geophys. J. Int.,
180(1), 251–267.

Reller, C., Loeliger, H.-A. & Maranò, S., 2011. Multi-sensor estimation
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A P P E N D I X A : R E L AT I O N S H I P
B E T W E E N L I K E L I H O O D F U N C T I O N
A N D S A M P L I N G PAT T E R N

In this section, we show the relationship between the LF pY (ỹ|θ)
and the Fourier transform of the sampling pattern H(κx, κy).

A1 Scalar case

We consider the scalar wave equation of (3) and the measurement
model of (4). We parametrize the wave equation as a function of
{α1, α2} instead of {α0, ϕ0} using

α1 = α0 cos ϕ0

α2 = −α0 sin ϕ0 .

With respect to ML estimation, this parametrization is equivalent
because the transformation between the two parameters pairs is
bijective.

The measurement Y
(n)

k , at the time instant tk and location pn is
therefore

Y
(n)

k = u(pn, tk) + Z
(n)
k

= α0 cos(ωt − κ · p + ϕ0) + Z
(n)
k

= α1 cos(ωt − κ · p) + α2 sin(ωt − κ · p) + Z
(n)
k .

For a given κ, the ML estimates α̂1 and α̂2 can be found analytically
and are

α̂1 = 2

NsK

Ns∑
n=1

K∑
k=1

Y
(n)

k cos(ωtk − κ · pn),

α̂2 = − 2

NsK

Ns∑
n=1

K∑
k=1

Y
(n)

k sin(ωtk − κ · pn),

http://www.gurobi.com
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and their expected values are

E{α̂1} = 2

NsK

Ns∑
n=1

K∑
k=1

(ᾰ1 cos(ω̆tk − κ̆ · pn) cos(ωtk − κ · pn)

+ ᾰ2 sin(ω̆tk − κ̆ · pn) cos(ωtk − κ · pn)) ,

E{α̂2} = − 2

NsK

Ns∑
n=1

K∑
k=1

(ᾰ1 cos(ω̆tk − κ̆ · pn) sin(ωtk − κ · pn)

+ ᾰ2 sin(ω̆tk − κ̆ · pn) sin(ωtk − κ · pn)) ,

where the superscript ˘ denotes the true value of the parameter and
the lack of superscript denotes search parameters, for example, the
argument of the LF. The expectations are taken with respect to Z

(	)
k .

When κ = κ̆, then E{α̂1} ≈ ᾰ1 and E{α̂2} ≈ ᾰ2. The symbol
≈ denotes an approximation. We used the following trigonometric
approximations

K∑
k=1

cos2(ωk + γ) ≈ K

2
,

K∑
k=1

sin2(ωk + γ) ≈ K

2
,

K∑
k=1

sin(ωk + γ) cos(ωk + γ) ≈ 0 ,

which are valid for ω being not near 0 or 1/2 and are exact when
ω = 2πm

K
m ∈ Z [see example 3.14 in Kay (1993) or Stoica et al.

(1989)].
The second moments of α̂1 and α̂2 are

E
{
α̂2

1

} ≈ E{α̂1}2 + 2

NsK
σ2

and

E
{
α̂2

2

} ≈ E{α̂2}2 + 2

NsK
σ2 ,

respectively.
From the previous derivations, it is clear to see the dependence on

κ of α̂1(κ) and α̂2(κ). Therefore, given observations ỹ and plugging
α̂1 and α̂2 into the PDF (5), it is possible to rewrite the LF of the
observation as a sole function of the κ

pY (ỹ|κ) = max
α0,ϕ0

pY (ỹ|θ)

= pY (ỹ|α̂1(κ), α̂2(κ),κ) .

In order to investigate the shape of the LF, we take the natural
logarithm of the LF and drop all the additive and multiplicative
constants not depending on κ

ln(pY (y|κ)) ∝ −
Ns∑

n=1

K∑
k=1

(
Y

(n)
k − u

(n)
k (θ)

)2

= −
Ns∑

n=1

K∑
k=1

(
u

(n)
k (θ̆) + Z

(n)
k − u

(n)
k (θ)

)2
,

where again we distinguish between the true and unknown wave-
field ŭ

(n)
k = u

(n)
k (θ̆), and the wavefield as a function of the search

parameters u
(n)
k = u

(n)
k (θ). The symbol ∝ denotes equality up to an

affine transform.
In order to get insight about the average shape of the function,

we take the expectation of such quantity

E {ln(pY (y|κ))} ∝ E

{
−

Ns∑
n=1

K∑
k=1

(
ŭ

(n)
k + Z

(n)
k − u

(n)
k

)2
}

∝ E{α̂1}2 + E{α̂2}2

= |E{α̂1} + iE{α̂2}|2

=
∣∣∣∣∣

Ns∑
n=1

K∑
k=1

ŭ
(n)
k e−i(ωtk−κ·pn)

∣∣∣∣∣
2

= ∣∣ᾰ0e
−iϕ̆0G(ω − ω̆)H(κ − κ̆)

∣∣2
,

where we dropped the quantities E{∑Ns
n=1

∑K
k=1(ŭ(n)

k )2} and
E{∑Ns

n=1

∑K
k=1(Z (n)

k )2} since they are constants with respect to κ.
Moreover, we used

Ns∑
n=1

K∑
k=1

u
(n)
k ŭ

(n)
k =

Ns∑
n=1

K∑
k=1

(α̂1 cos(ωtk − κ · pn)

+ α̂2 sin(ωtk − κ · pn))

· (ᾰ1 cos(ω̆tk − κ̆ · pn) + ᾰ2 sin(ω̆tk − κ̆ · pn))

≈ NsL

2
(α̂1E {α̂1} + α̂2E {α̂2})

and

Ns∑
n=1

K∑
k=1

(
u

(n)
k

)2
=

Ns∑
n=1

K∑
k=1

(α̂1 cos(ωtk − κ · pn)

+ α̂2 sin(ωtk − κ · pn))2

≈ NsL

2

(
α̂2

1 + α̂2
2

)
.

A2 Vector case

In the vector case, each sensor component may experience a differ-
ent amplitude scalings or phase delay on each component, as shown
in (1) and (2). The amplitude scalings {β(	)}	 = 1, . . . , L and the phase
delays {γ(	)}	=1,...,L are, in general, functions of the wavefield pa-
rameters θ except for α and ϕ. The measurement Y

(	)
k , from the 	th

channel, at the time instant tk and at position p	 is

Y
(	)

k = u(p	, tk) + Z
(	)
k

= α0β
(	) cos(ωtk − κ · p	 + ϕ0 + γ(	)) + Z

(	)
k

= α1β
(	) cos(ωtk − κ · p	 + γ(	))

+ α2β
(	) sin(ωtk − κ · p	 + γ(	)) + Z

(	)
k .
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With a suitable parametrization of {β(	), γ(	)}	 = 1, . . . , L, this model
is able to capture all the amplitude scaling and phase delays as in
the seismic wave equations of (1) and (2).

Similar to the scalar case, it is possible to obtain analytic expres-
sions of both ML estimates α̂1 and α̂2 as

α̂1 = 2

K

∑L
	=1

∑K
k=1 Y

(	)
k β(	) cos(ωtk − κ · p	 + γ(	))∑L

	=1(β(	))2
.

Here and in what follows, we omit the formulae concerning α̂2

because of their similarity with the derivations of α̂1. Details on the
estimation of α̂1 and α̂2 in this setting can be found in Reller et al.
(2011).

The first and the second moments of α̂1 are

E{α̂1} ≈ 2/K∑L
	=1(β(	))2

L∑
	=1

K∑
k=1

β(	)β̆(	)
(
ᾰ1 cos(ω̆tk − κ̆ · p	 + γ̆(	))

+ ᾰ2 sin(ω̆tk − κ̆ · p	 + γ̆(	))
)

cos(ωtk − κ · p	 + γ(	)),

E{α̂2
1} ≈ E{α̂1}2 + 2

NsK
σ2.

As for the scalar case, we are interested in the average shape.
Therefore, we take the logarithm of the LF, take the expectation and
drop multiplicative and additive constants to get

E {ln(pY (y|θ))} ∝ E{α̂1}2 + E{α̂2}2

≈
∣∣∣∣∣
∑L

	=1

∑K
k=1 β(	)ŭ

(n)
k e−i(ωtk−κ · p	+γ(	))∑L

	=1(β(	))2

∣∣∣∣∣
2

.

We observe that, in the wave models of (1) and (2) the amplitude
scalings and the phase delays are identical on the same component
of different sensors. We denote with βx, γx, βy, γy, and βz , γz the
scalings and delays on the x, y and z components, respectively.
Moreover, the quantity

∑L
	=1(β(	))2 is constant with respect to κ.

The expression can be further simplified by grouping identical
scalings

E {ln(pY (y|θ))} ∝ ∣∣(βxβ̆xei(γ̆x−γx) + βyβ̆yei(γ̆y−γy ) + βzβ̆yei(γ̆z−γz )
)

· ᾰe−iϕ̆G(ω − ω̆)H(κ − κ̆)
∣∣2

.

A P P E N D I X B : M I P A R R AY L AYO U T S

In this section, we provide the layouts found using the MIP method
for different number of sensors. We explain how it is possible to use
the optimized geometries by considering the largest wavenumber in
the actual wavefield in practical applications.

Using the scaling property of the Fourier transform it is possi-
ble to stretch or compress the array layout according to the largest
wavenumber in the wavefield and, therefore, adapt the Fourier trans-
form of the sampling pattern to the actual frequency content of the
wavefield. The array layouts presented in this section are obtained
using κmax = 1 and different values of κmin. Let κ∗

max be the largest
wavenumber in the wavefield. Let h∗(x, y) and H∗(κx, κy) denote the
desired sampling pattern and its Fourier Transform, respectively.
They are related to the h(x, y) and H(κx, κy) provided in Figs B1
and B2 as

h∗(x, y) = h
(
xκ∗

max, yκ∗
max

)
,

H∗(κx, κy) = 1

κ∗
max

H∗
(

κx

κ∗
max

,
κy

κ∗
max

)
.

The effective κ∗
min is also changed as κ∗

min = κminκ
∗
max. Choice of

which κmin to choose should be related in particular to the smallest
wavenumber of interest in the analysis. In fact, we observe how a
small κmin leads to arrays with larger aperture.

In practice, stretching the spatial sampling pattern by 1/κ∗
max

allows us to obtain a H∗(κx, κy) with local maxima minimized in
the annulus κminκ

∗
max ≤ ‖κ‖2 ≤ 2κ∗

max.
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Figure B1. Array layouts found with the MIP method for Ns = 7, . . . , 12.
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Figure B2. Array layouts found with the MIP method for Ns = 13, . . . , 18.


