69 research outputs found
A subset of anti-rotavirus antibodies directed against the viral protein VP7 predicts the onset of celiac disease and induces typical features of the disease in the intestinal epithelial cell line T84.
Celiac disease (CD) is an autoimmune disorder of the small intestine triggered by environmental factors in genetically predisposed individuals. A strong association between type 1 diabetes (T1DM) and CD has been reported. We have previously shown that rotavirus infection may be involved in the pathogenesis of CD through a mechanism of molecular mimicry. Indeed, we identified a subset of anti-transglutaminase IgA antibodies that recognize the rotavirus viral protein VP7. In this study, we aimed at evaluating whether such antibodies may predict the onset of CD in children affected by T1DM. Moreover, to further analyze the link between rotavirus infection and pathogenesis of CD, we analyzed the effect of anti-rotavirus VP7 antibodies on T84 intestinal epithelial cells using the gene-array technique, complemented by the analysis of molecules secreted in the supernatant of stimulated cells. We found that anti-rotavirus VP7 antibodies are present in the vast majority (81 %) of T1DM-CD tested sera, but are detectable also in a fraction (27 %) of T1DM children without CD. Moreover, we found that anti-rotavirus VP7 antibodies are present before the CD onset, preceding the detection of anti-tTG and anti-endomysium antibodies. The gene-array analysis showed that purified anti-rotavirus VP7 antibodies modulate genes that are involved in apoptosis, inflammation, and alteration of the epithelial barrier integrity in intestinal epithelial cells, all typical features of CD. Taken together, these new data further support the involvement of rotavirus infection in the pathogenesis of CD and suggest a predictive role of anti-rotavirus VP7 antibodies
Primary hyperparathyroidism diagnosed after surgical ablation of a costal mass mistaken for giant-cell bone tumor: a case report
<p>Abstract</p> <p>Introduction</p> <p>Primary hyperparathyroidism is a common endocrine disorder characterized by elevated parathyroid hormone levels, which cause continuous osteoclastic bone resorption. Giant cell tumor of bone is an expansile osteolytic tumor that contains numerous osteoclast-like giant cells. There are many similarities in the radiological and histological features of giant cell tumor of bone and brown tumor. This is a rare benign focal osteolytic process most commonly caused by hyperparathyroidism.</p> <p>Case presentation</p> <p>We report the unusual case of a 40-year-old Caucasian woman in which primary hyperparathyroidism was diagnosed after surgical ablation of a costal mass. The mass was suspected of being neoplastic and histopathology was compatible with a giant cell tumor of bone. On the basis of the biochemical results (including serum calcium, phosphorous and intact parathyroid hormone levels) primary hyperparathyroidism was suspected and a brown tumor secondary to refractory hyperparathyroidism was diagnosed.</p> <p>Conclusions</p> <p>Since giant cell tumor is a bone neoplasm that has major implications for the patient, the standard laboratory tests in patients with bone lesions are important for a correct diagnosis.</p
Physicians’ misperceived cardiovascular risk and therapeutic inertia as determinants of low LDL-cholesterol targets achievement in diabetes
Background: Greater efforts are needed to overcome the worldwide reported low achievement of LDL-c targets. This survey aimed to dissect whether and how the physician-based evaluation of patients with diabetes is associated with the achievement of LDL-c targets. Methods: This cross-sectional self-reported survey interviewed physicians working in 67 outpatient services in Italy, collecting records on 2844 patients with diabetes. Each physician reported a median of 47 records (IQR 42–49) and, for each of them, the physician specified its perceived cardiovascular risk, LDL-c targets, and the suggested refinement in lipid-lowering-treatment (LLT). These physician-based evaluations were then compared to recommendations from EAS/EASD guidelines. Results: Collected records were mostly from patients with type 2 diabetes (94%), at very-high (72%) or high-cardiovascular risk (27%). Physician-based assessments of cardiovascular risk and of LDL-c targets, as compared to guidelines recommendation, were misclassified in 34.7% of the records. The misperceived assessment was significantly higher among females and those on primary prevention and was associated with 67% lower odds of achieving guidelines-recommended LDL-c targets (OR 0.33, p < 0.0001). Peripheral artery disease, target organ damage and LLT-initiated by primary-care-physicians were all factors associated with therapeutic-inertia (i.e., lower than expected probability of receiving high-intensity LLT). Physician-suggested LLT refinement was inadequate in 24% of overall records and increased to 38% among subjects on primary prevention and with misclassified cardiovascular risk. Conclusions: This survey highlights the need to improve the physicians’ misperceived cardiovascular risk and therapeutic inertia in patients with diabetes to successfully implement guidelines recommendations into everyday clinical practice
Survey on retinopathy of prematurity (ROP) in Italy
This study aims to investigate the incidence and the relative risk factors of retinopathy of prematurity (ROP) and posterior-ROP (P-ROP): ROP in Zone I and posterior Zone II, as well as to analyze the occurrence of surgical treatment of ROP and to evaluate the short term outcome of the disease in Italy
Endothelial Cells' Activation and Apoptosis Induced by a Subset of Antibodies against Human Cytomegalovirus: Relevance to the Pathogenesis of Atherosclerosis
Human cytomegalovirus (hCMV) is involved in the pathogenesis of atherosclerosis. We have previously shown in patients with atherosclerosis that antibodies directed against the hCMV-derived proteins US28 and UL122 are able to induce endothelial cell damage and apoptosis of non-stressed endothelial cells through cross-rection with normally expressed surface molecules. Our aim was to dissect the molecular basis of such interaction and to investigate mechanisms linking innate immunity to atherosclerosis.We analysed the gene expression profiles in endothelial cells stimulated with antibodies affinity-purified against either the UL122 or the US28 peptides using the microarray technology. Microarray results were validated by quantitative PCR and by detection of proteins in the medium. Supernatant of endothelial cells incubated with antibodies was analysed also for the presence of Heat Shock Protein (HSP)60 and was used to assess stimulation of Toll-Like Receptor-4 (TLR4). Antibodies against UL122 and US28 induced the expression of genes encoding for adhesion molecules, chemokines, growth factors and molecules involved in the apoptotis process together with other genes known to be involved in the initiation and progression of the atherosclerotic process. HSP60 was released in the medium of cells incubated with anti-US28 antibodies and was able to engage TLR4.Antibodies directed against hCMV modulate the expression of genes coding for molecules involved in activation and apoptosis of endothelial cells, processes known to play a pivotal role in the pathogenesis of atherosclerosis. Moreover, endothelial cells exposed to such antibodies express HSP60 on the cell surface and release HSP60 in the medium able to activate TLR4. These data confirm that antibodies directed against hCMV-derived proteins US28 and UL122 purified from patients with coronary artery disease induce endothelial cell damage and support the hypothesis that hCMV infection may play a crucial role in mediating the atherosclerotic process
Gene Expression Profiling in Dermatitis Herpetiformis Skin Lesions
Dermatitis herpetiformis (DH) is an autoimmune blistering skin disease associated with gluten-sensitive enteropathy (CD). In order to investigate the pathogenesis of skin lesions at molecular level, we analysed the gene expression profiles in skin biopsies from 6 CD patients with DH and 6 healthy controls using Affymetrix HG-U133A 2.0 arrays. 486 genes were differentially expressed in DH skin compared to normal skin: 225 were upregulated and 261 were downregulated. Consistently with the autoimmune origin of DH, functional classification of the differentially expressed genes (DEGs) indicates a B- and T-cell immune response (LAG3, TRAF5, DPP4, and NT5E). In addition, gene modulation provides evidence for a local inflammatory response (IL8, PTGFR, FSTL1, IFI16, BDKRD2, and NAMPT) with concomitant leukocyte recruitment (CCL5, ENPP2), endothelial cell activation, and neutrophil extravasation (SELL, SELE). DEGs also indicate overproduction of matrix proteases (MMP9, ADAM9, and ADAM19) and proteolytic enzymes (CTSG, ELA2, CPA3, TPSB2, and CMA1) that may contribute to epidermal splitting and blister formation. Finally, we observed modulation of genes involved in cell growth inhibition (CGREF1, PA2G4, and PPP2R1B), increased apoptosis (FAS, TNFSF10, and BASP1), and reduced adhesion at the dermal epidermal junction (PLEC1, ITGB4, and LAMA5). In conclusion, our results identify genes that are involved in the pathogenesis of DH skin lesions
- …