825 research outputs found
Glassy phases in Random Heteropolymers with correlated sequences
We develop a new analytic approach for the study of lattice heteropolymers,
and apply it to copolymers with correlated Markovian sequences. According to
our analysis, heteropolymers present three different dense phases depending
upon the temperature, the nature of the monomer interactions, and the sequence
correlations: (i) a liquid phase, (ii) a ``soft glass'' phase, and (iii) a
``frozen glass'' phase. The presence of the new intermediate ``soft glass''
phase is predicted for instance in the case of polyampholytes with sequences
that favor the alternation of monomers.
Our approach is based on the cavity method, a refined Bethe Peierls
approximation adapted to frustrated systems. It amounts to a mean field
treatment in which the nearest neighbor correlations, which are crucial in the
dense phases of heteropolymers, are handled exactly. This approach is powerful
and versatile, it can be improved systematically and generalized to other
polymeric systems
A 20-year reanalysis experiment in the Baltic Sea using three-dimensional variational (3DVAR) method
A 20-year retrospective reanalysis of the ocean state in the Baltic Sea is constructed by assimilating available historical temperature and salinity profiles into an operational numerical model with three-dimensional variational (3DVAR) method. To determine the accuracy of the reanalysis, the authors present a series of comparisons to independent observations on a monthly mean basis. <br><br> In the reanalysis, temperature (T) and salinity (S) fit better with independent measurements than the free run at different depths. Overall, the mean biases of temperature and salinity for the 20 year period are reduced by 0.32 °C and 0.34 psu, respectively. Similarly, the mean root mean square error (RMSE) is decreased by 0.35 °C for temperature and 0.3 psu for salinity compared to the free run. The modeled sea surface temperature, which is mainly controlled by the weather forcing, shows the least improvements due to sparse in situ observations. Deep layers, on the other hand, witness significant and stable model error improvements. In particular, the salinity related to saline water intrusions into the Baltic Proper is largely improved in the reanalysis. The major inflow events such as in 1993 and 2003 are captured more accurately as the model salinity in the bottom layer is increased by 2–3 psu. Compared to independent sea level at 14 tide gauge stations, the correlation between model and observation is increased by 2%–5%, while the RMSE is generally reduced by 10 cm. It is found that the reduction of RMSE comes mainly from the reduction of mean bias. In addition, the changes in density induced by the assimilation of T/S contribute little to the barotropic transport in the shallow Danish Transition zone. <br><br> The mixed layer depth exhibits strong seasonal variations in the Baltic Sea. The basin-averaged value is about 10 m in summer and 30 m in winter. By comparison, the assimilation induces a change of 20 m to the mixed layer depth in deep waters and wintertime, whereas small changes of about 2 m occur in summer and shallow waters. It is related to the strong heating in summer and the dominant role of the surface forcing in shallow water, which largely offset the effect of the assimilation
FITNESS IN FORMING YOUTH SUBSCULTURE
Fitness is a social and cultural phenomenon, including philosophi-cal, social, economic and psychological aspects. Fitness forms the active life position of youth, improves the physical form, forms leadership skills, self-confidence. So fitness is the instrument to the social adaptation of young people. Fast expansion of fitness technologies through informal as-sociations in the youth environment generally leads to organization of healthy lifestyle subculture. Social and cultural foundations of youth asso-ciations are determined through basic values, language competence and language orientations; types of activities. It is the assimilated values of culture that form priorities, kind of personФитнес позиционируется как социокультурное явление, включающее философский, социальный, экономический и психологический аспекты. Фитнес формирует активную жизненную позицию молодежи, улучшает физическую форму, формирует навыки лидерства, уверенности в себе и способствует тем самым социальной адаптации молодёжи. Динамичное распространение фитнес-технологий в молодежной среде через неформальные объединения в целом способствует формированию субкультуры здорового образа жизни. Социокультурные основания молодежных объединений и солидарностей определяются через основные системы ценностей, языковую компетентность и языковые ориентации; типы времяпрепровождения, любительские и художественные интересы. Именно интериоризированные ценности культуры формируют ценностные ориентации и приоритеты, определенный тип человека
Deviations from the mean field predictions for the phase behaviour of random copolymers melts
We investigate the phase behaviour of random copolymers melts via large scale
Monte Carlo simulations. We observe macrophase separation into A and B--rich
phases as predicted by mean field theory only for systems with a very large
correlation lambda of blocks along the polymer chains, far away from the
Lifshitz point. For smaller values of lambda, we find that a locally
segregated, disordered microemulsion--like structure gradually forms as the
temperature decreases. As we increase the number of blocks in the polymers, the
region of macrophase separation further shrinks. The results of our Monte Carlo
simulation are in agreement with a Ginzburg criterium, which suggests that mean
field theory becomes worse as the number of blocks in polymers increases.Comment: 6 pages, 4 figures, Late
Hidden potential in predicting wintertime temperature anomalies in the Northern Hemisphere
Variability of the North Atlantic Oscillation (NAO) drives wintertime temperature anomalies in the Northern Hemisphere. Dynamical seasonal prediction systems can skilfully predict the winter NAO. However, prediction of the NAO-dependent air temperature anomalies remains elusive, partially due to the low variability of predicted NAO. Here, we demonstrate a hidden potential of a multi-model ensemble of operational seasonal prediction systems for predicting wintertime temperature by increasing the variability of predicted NAO. We identify and subsample those ensemble members which are close to NAO index statistically estimated from initial autumn conditions. In our novel multi-model approach, the correlation prediction skill for wintertime Central Europe temperature is improved from 0.25 to 0.66, accompanied by an increased winter NAO prediction skill of 0.9. Thereby, temperature anomalies can be skilfully predicted for the upcoming winter over a large part of the Northern Hemisphere through increased variability and skill of predicted NAO
Hidden Potential in Predicting Wintertime Temperature Anomalies in the Northern Hemisphere
Variability of the North Atlantic Oscillation (NAO) drives wintertime temperature anomalies in the Northern Hemisphere. Dynamical seasonal prediction systems can skilfully predict the winter NAO. However, prediction of the NAO-dependent air temperature anomalies remains elusive, partially due to the low variability of predicted NAO. Here, we demonstrate a hidden potential of a multi-model ensemble of operational seasonal prediction systems for predicting wintertime temperature by increasing the variability of predicted NAO. We identify and subsample those ensemble members which are close to NAO index statistically estimated from initial autumn conditions. In our novel multi-model approach, the correlation prediction skill for wintertime Central Europe temperature is improved from 0.25 to 0.66, accompanied by an increased winter NAO prediction skill of 0.9. Thereby, temperature anomalies can be skilfully predicted for the upcoming winter over a large part of the Northern Hemisphere through increased variability and skill of predicted NAO
Increase in Arctic coastal erosion and its sensitivity to warming in the twenty-first century
Arctic coastal erosion damages infrastructure, threatens coastal communities and releases organic carbon from permafrost. However, the magnitude, timing and sensitivity of coastal erosion increase to global warming remain unknown. Here we project the Arctic-mean erosion rate to increase and very likely exceed its historical range of variability before the end of the century in a wide range of emission scenarios. The sensitivity of erosion to warming roughly doubles, reaching 0.4–0.8 m yr−1 °C−1 and 2.3–4.2 TgC yr−1 °C−1 by the end of the century. We develop a simplified semi-empirical model to produce twenty-first-century pan-Arctic coastal erosion rate projections. Our results will inform policymakers on coastal conservation and socioeconomic planning, and organic carbon flux projections lay out the path for future work to investigate the impact of Arctic coastal erosion on the changing Arctic Ocean, its role as a global carbon sink, and the permafrost–carbon feedback. © 2022, The Author(s)
Improved seasonal prediction of European summer temperatures with new five-layer soil-hydrology scheme
We evaluate the impact of a new 5-layer soil-hydrology scheme on seasonal hindcast skill of 2-meter temperatures over Europe obtained with the Max Planck Institute Earth System Model (MPI-ESM). Assimilation experiments from 1981 to 2010 and 10-member seasonal hindcasts initialized on 1 May each year are performed with MPI-ESM in two soil configurations, one using a bucket scheme and one a new 5-layer soil-hydrology scheme. We find the seasonal hindcast skill for European summer temperatures to improve with the 5-layer scheme compared to the bucket scheme, and investigate possible causes for these improvements. First, improved indirect soil moisture assimilation allows for enhanced soil moisture-temperature feedbacks in the hindcasts. Additionally, this leads to improved prediction of anomalies in the 500 hPa geopotential height surface, reflecting more realistic atmospheric circulation patterns over Europe
Domains in Melts of Comb-Coil Diblock Copolymers: Superstrong Segregation Regime
Conditions for the crossover from the strong to the superstrong segregation regime are analyzed for the case of comb-coil diblock copolymers. It is shown that the critical interaction energy between the components required to induce the crossover to the superstrong segregation regime is inversely proportional to mb = 1 + n/m, where n is the degree of polymerization of the side chain and m is the distance between successive grafting points. As a result, the superstrong segregation regime, being rather rare in the case of ordinary block copolymers, has a much better chance to be realized in the case of diblock copolymers with combs grafted to one of the blocks.
- …