128,116 research outputs found

    EpiCollect+: linking smartphones to web applications for complex data collection projects.

    Get PDF
    © 2014 Aanensen DM et al.Previously, we have described the development of the generic mobile phone data gathering tool, EpiCollect, and an associated web application, providing two-way communication between multiple data gatherers and a project database. This software only allows data collection on the phone using a single questionnaire form that is tailored to the needs of the user (including a single GPS point and photo per entry), whereas many applications require a more complex structure, allowing users to link a series of forms in a linear or branching hierarchy, along with the addition of any number of media types accessible from smartphones and/or tablet devices (e.g., GPS, photos, videos, sound clips and barcode scanning). A much enhanced version of EpiCollect has been developed (EpiCollect+). The individual data collection forms in EpiCollect+ provide more design complexity than the single form used in EpiCollect, and the software allows the generation of complex data collection projects through the ability to link many forms together in a linear (or branching) hierarchy. Furthermore, EpiCollect+ allows the collection of multiple media types as well as standard text fields, increased data validation and form logic. The entire process of setting up a complex mobile phone data collection project to the specification of a user (project and form definitions) can be undertaken at the EpiCollect+ website using a simple drag and drop procedure, with visualisation of the data gathered using Google Maps and charts at the project website. EpiCollect+ is suitable for situations where multiple users transmit complex data by mobile phone (or other Android devices) to a single project web database and is already being used for a range of field projects, particularly public health projects in sub-Saharan Africa. However, many uses can be envisaged from education, ecology and epidemiology to citizen science

    Decision Tree Analysis as a Supplementary Tool to Enhance Histomorphological Differentiation when Distinguishing Human from Non-human Cranial Bone in both Burnt and Unburnt States: A feasibility study

    Get PDF
    This feasibility study was undertaken to describe and record the histological characteristics of burnt and unburnt cranial bone fragments from human and non-human bones. Reference series of fully mineralised, transverse sections of cranial bone, from all variables and specimen states were prepared by manual cutting and semi-automated grinding and polishing methods. A photomicrograph catalogue reflecting differences in burnt and unburnt bone from human and non-humans was recorded and qualitative analysis was performed using an established classification system based on primary bone characteristics. The histomorphology associated with human and non-human samples was, for the main part, preserved following burning at high temperature. Clearly, fibro-lamellar complex tissue subtypes, such as plexiform or laminar primary bone, were only present in non-human bones. A decision tree analysis based on histological features provided a definitive identification key for distinguishing human from non-human bone, with an accuracy of 100%. The decision tree for samples where burning was unknown was 96% accurate, and multi-step classification to taxon was possible with 100% accuracy. The results of this feasibility study, strongly suggest that histology remains a viable alternative technique if fragments of cranial bone require forensic examination in both burnt and unburnt states. The decision tree analysis may provide an additional, but vital tool to enhance data interpretation. Further studies are needed to assess variation in histomorphology taking into account other cranial bones, ontogeny, species and burning conditions

    Pressure-Driven Metal-Insulator Transition in Hematite from Dynamical Mean-Field Theory

    Full text link
    The Local Density Approximation combined with Dynamical Mean-Field Theory (LDA+DMFT method) is applied to the study of the paramagnetic and magnetically ordered phases of hematite Fe2_2O3_3 as a function of volume. As the volume is decreased, a simultaneous 1st order insulator-metal and high-spin to low-spin transition occurs close to the experimental value of the critical volume. The high-spin insulating phase is destroyed by a progressive reduction of the charge gap with increasing pressure, upon closing of which the high spin phase becomes unstable. We conclude that the transition in Fe2_2O3_3 at ≈\approx50 GPa can be described as an electronically driven volume collapse.Comment: 5 pages, 4 figure

    Treatment of Young Children with HIV Infection: Using Evidence to Inform Policymakers

    Get PDF
    PMCID: PMC3404108This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited
    • …
    corecore