139 research outputs found

    The 2011 October Draconids outburst. I. Orbital elements, meteoroid fluxes and 21P/Giacobini-Zinner delivered mass to Earth

    Get PDF
    On October 8th, 2011 the Earth crossed the dust trails left by comet 21P/Giacobini-Zinner during its XIX and XX century perihelion approaches with the comet being close to perihelion. The geometric circumstances of that encounter were thus favorable to produce a meteor storm, but the trails were much older than in the 1933 and 1946 historical encounters. As a consequence the 2011 October Draconid display exhibited several activity peaks with Zenithal Hourly Rates of about 400 meteors per hour. In fact, if the display had been not forecasted, it could have passed almost unnoticed as was strongly attenuated for visual observers due to the Moon. This suggests that most meteor storms of a similar nature could have passed historically unnoticed under unfavorable weather and Moon observing conditions. The possibility of obtaining information on the physical properties of cometary meteoroids penetrating the atmosphere under low-geocentric velocity encounter circumstances motivated us to set up a special observing campaign. Added to the Spanish Fireball Network wide-field all-sky and CCD video monitoring, other high-sensitivity 1/2" black and white CCD video cameras were attached to modified medium-field lenses for obtaining high resolution orbital information. The trajectory, radiant, and orbital data of 16 October Draconid meteors observed at multiple stations are presented. The results show that the meteors appeared from a geocentric radiant located at R.A.=263.0+-0.4 deg. and Dec.=+55.3+-0.3 deg. that is in close agreement with the radiant predicted for the 1873-1894 and the 1900 dust trails. The estimated mass of material from 21P/Giacobini-Zinner delivered to Earth during the six-hours outburst was around 950+-150 kg.Comment: Manuscript in press in Monthly Notices of the Royal Astronomical Society, submitted to MNRAS on November 16th, 2012 Accepted for publication in MNRAS on April 28th, 2013 Manuscript Pages: 21 Tables: 8 Figures: 4 Manuscript associated: "The 2011 October Draconids outburst. II. Meteoroid chemical abundances from fireball spectroscopy" by J.M. Madiedo is also in press in the same journa

    Sustained Delivery of Activated Rho GTPases and BDNF Promotes Axon Growth in CSPG-Rich Regions Following Spinal Cord Injury

    Get PDF
    Background: Spinal cord injury (SCI) often results in permanent functional loss. This physical trauma leads to secondary events, such as the deposition of inhibitory chondroitin sulfate proteoglycan (CSPG) within astroglial scar tissue at the lesion. Methodology/Principal Findings: We examined whether local delivery of constitutively active (CA) Rho GTPases, Cdc42 and Rac1 to the lesion site alleviated CSPG-mediated inhibition of regenerating axons. A dorsal over-hemisection lesion was created in the rat spinal cord and the resulting cavity was conformally filled with an in situ gelling hydrogel combined with lipid microtubes that slowly released constitutively active (CA) Cdc42, Rac1, or Brain-derived neurotrophic factor (BDNF). Treatment with BDNF, CA-Cdc42, or CA-Rac1 reduced the number of GFAP-positive astrocytes, as well as CSPG deposition, at the interface of the implanted hydrogel and host tissue. Neurofilament 160kDa positively stained axons traversed the glial scar extensively, entering the hydrogel-filled cavity in the treatments with BDNF and CA-Rho GTPases. The treated animals had a higher percentage of axons from the corticospinal tract that traversed the CSPG-rich regions located proximal to the lesion site. Conclusion: Local delivery of CA-Cdc42, CA-Rac1, and BDNF may have a significant therapeutic role in overcoming CSPGmediate

    The Transcription Factor Cux1 Regulates Dendritic Morphology of Cortical Pyramidal Neurons

    Get PDF
    In the murine cerebral cortex, mammalian homologues of the Cux family transcription factors, Cux1 and Cux2, have been identified as restricted molecular markers for the upper layer (II-IV) pyramidal neurons. However, their functions in cortical development are largely unknown. Here we report that increasing the intracellular level of Cux1, but not Cux2, reduced the dendritic complexity of cultured cortical pyramidal neurons. Consistently, reducing the expression of Cux1 promoted the dendritic arborization in these pyramidal neurons. This effect required the existence of the DNA-binding domains, hence the transcriptional passive repression activity of Cux1. Analysis of downstream signals suggested that Cux1 regulates dendrite development primarily through suppressing the expression of the cyclin-dependent kinase inhibitor p27Kip1, and RhoA may mediate the regulation of dendritic complexity by Cux1 and p27. Thus, Cux1 functions as a negative regulator of dendritic complexity for cortical pyramidal neurons

    Neurotrophic requirements of human motor neurons defined using amplified and purified stem-cell derived cultures

    Get PDF
    Neurotrophic requirements of human motor neurons defined using amplified and purified stem-cell derived culturesHuman motor neurons derived from embryonic and induced pluripotent stem cells (hESCs and hiPSCs) are a potentially important tool for studying motor neuron survival and pathological cell death. However, their basic survival requirements remain poorly characterized. Here, we sought to optimize a robust survival assay and characterize their response to different neurotrophic factors. First, to increase motor neuron yield, we screened a small-molecule collection and found that the Rho-associated kinase (ROCK) inhibitor Y-27632 enhances motor neuron progenitor proliferation up to 4-fold in hESC and hiPSC cultures. Next, we FACS-purified motor neurons expressing the Hb9::GFP reporter from Y-27632-amplified embryoid bodies and cultured them in the presence of mitotic inhibitors to eliminate dividing progenitors. Survival of these purified motor neurons in the absence of any other cell type was strongly dependent on neurotrophic support. GDNF, BDNF and CNTF all showed potent survival effects (EC(50) 1-2 pM). The number of surviving motor neurons was further enhanced in the presence of forskolin and IBMX, agents that increase endogenous cAMP levels. As a demonstration of the ability of the assay to detect novel neurotrophic agents, Y-27632 itself was found to support human motor neuron survival. Thus, purified human stem cell-derived motor neurons show survival requirements similar to those of primary rodent motor neurons and can be used for rigorous cell-based screening.This work was funded by Project A.L.S., P2ALS and NYSTEM grant number CO24415. The work of N.J.L. was supported by the Portuguese Foundation for Science and Technology SFRH/BD/33421/2008 and the Luso-American Development Foundation. B.J.-K. was supported by the National Institute of Neurological Disorders and Stroke (NINDS). L.R. was supported by the Swedish Brain Foundation/Hjarnfonden. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript

    EphA4 Blockers Promote Axonal Regeneration and Functional Recovery Following Spinal Cord Injury in Mice

    Get PDF
    Upregulation and activation of developmental axon guidance molecules, such as semaphorins and members of the Eph receptor tyrosine kinase family and their ligands, the ephrins, play a role in the inhibition of axonal regeneration following injury to the central nervous system. Previously we have demonstrated in a knockout model that axonal regeneration following spinal cord injury is promoted in the absence of the axon guidance protein EphA4. Antagonism of EphA4 was therefore proposed as a potential therapy to promote recovery from spinal cord injury. To further assess this potential, two soluble recombinant blockers of EphA4, unclustered ephrin-A5-Fc and EphA4-Fc, were examined for their ability to promote axonal regeneration and to improve functional outcome following spinal cord hemisection in wildtype mice. A 2-week administration of either of these blockers following spinal cord injury was sufficient to promote substantial axonal regeneration and functional recovery by 5 weeks following injury. Both inhibitors produced a moderate reduction in astrocytic gliosis, indicating that much of the effect of the blockers may be due to promotion of axon growth. These studies provide definitive evidence that soluble inhibitors of EphA4 function offer considerable therapeutic potential for the treatment of spinal cord injury and may have broader potential for the treatment of other central nervous system injuries

    Feedback within the Inter-Cellular Communication and Tumorigenesis in Carcinomas

    Get PDF
    The classical somatic mutation theory (SMT) of carcinogenesis and metastasis postulates that malignant transformation occurs in cells that accumulate a sufficient amount of mutations in the appropriate oncogenes and/or tumor suppressor genes. These mutations result in cell-autonomous activation of the mutated cell and a growth advantage relative to neighboring cells. However, the SMT cannot completely explain many characteristics of carcinomas. Contrary to the cell-centered view of the SMT with respect to carcinogenesis, recent research has revealed evidence that the tumor microenvironment plays a role in carcinogenesis as well. In this review, we present a new model that accommodates the role of the tumor microenvironment in carcinogenesis and complements the classical SMT. Our “feedback” model emphasizes the role of an altered spatiotemporal communication between epithelial and stromal cells during carcinogenesis: a dysfunctional intracellular signaling in tumorigenic epithelial cells leads to inappropriate cellular responses to stimuli from associated stromal or inflammatory cells. Thus, a positive feedback loop of the information flow between parenchymal and stromal cells results. This constant communication between the stromal cells and the tumor cells causes a perpetually activated state of tumor cells analogous to resonance disaster
    corecore