9,552 research outputs found

    Developing a rating scale for projected stories

    Get PDF
    The 6-Part Story Method (6PSM) is a projective tool in wide use by dramatherapists in the UK, USA and Israel (Lahad & Ayalon, 1993). In contrast to projective tests used by psychotherapists and psychologists, the 6PSM has never been the subject of any validation or reliability studies. This paper reports on the identification of scale items to describe the manifest content of 6-part stories. 26 statements with acceptable inter-rater reliability have been identified. These statements were used to rate stories produced by clinicians (n=24), mainstream community mental health patients (n=21) and patients with a Borderline Personality Disorder (n=19). Some features that were expected to be indicators of an author with a BPD diagnosis proved to be as common in stories from other authors. However a scale of eight items was identified that differentiated well between authors with a BPD diagnosis and others, with adequate test-retest and inter-rater reliability. Concurrent validity was tested against the Structured Clinical Interview for DSM-IV Axis II (SCID-II), the Clinical Outcomes in Routine Evaluation Outcome Measure (CORE-OM) and the Inventory of Interpersonal Problems short form (IIP-32)

    Collisional Processes in Extrasolar Planetsimal Disks - Dust Clumps in Fomalhaut's Debris Disk

    Get PDF
    This paper presents a model for the outcome of collisions between planetesimals in a debris disk and assesses the impact of collisional processes on the structure and size distribution of the disk. The model is presented by its application to Fomalhaut's collisionally replenished dust disk; a recent 450 micron image of this disk shows a clump embedded within it with a flux ~5 per cent of the total. The following conclusions are drawn: (i) SED modelling is consistent with Fomalhaut's disk having a collisional cascade size distribution extending from bodies 0.2 m in diameter down to 7 micron-sized dust. (ii) Collisional lifetime arguments imply that the cascade starts with planetesimals 1.5-4 km in diameter. Any larger bodies must be predominantly primordial. (iii) Constraints on the timescale for the ignition of the cascade are consistent with these primordial planetesimals having a distribution that extends up to 1000km, resulting in a disk mass of 5-10 times the minimum mass solar nebula. (iv) The debris disk is expected to be intrinsically clumpy, since planetesimal collisions result in dust clumps. The intrinsic clumpiness of Fomalhaut's disk is below current detection limits, but could be detectable by future observatories such as the ALMA, and could provide the only way of determining the primordial planetesimal population. (v) The observed clump could have originated in a collision between two runaway planetesimals, both larger than 1400 km diameter. It is unlikely that we should witness such an event unless both the formation of these runaways and the ignition of the collisional cascade occurred within the last ~10 Myr. (vi) Another explanation for Fomalhaut's clump is that ~5 per cent of the planetesimals in the ring are trapped in 1:2 resonance with a planet orbiting at 80 AU.Comment: 21 pages, 13 figures, accepted by MNRA

    CP Violation and Moduli Stabilization in Heterotic Models

    Get PDF
    The role of moduli stabilization in predictions for CP violation is examined in the context of four-dimensional effective supergravity models obtained from the weakly coupled heterotic string. We point out that while stabilization of compactification moduli has been studied extensively, the determination of background values for other scalars by dynamical means has not been subjected to the same degree of scrutiny. These other complex scalars are important potential sources of CP violation and we show in a simple model how their background values (including complex phases) may be determined from the minimization of the supergravity scalar potential, subject to the constraint of vanishing cosmological constant.Comment: 8 Pages. Based on a talk given at the CP Violation Conference, University of Michigan, Ann Arbor, November 4-18, 2001, correction to Eq. (27

    Surface oscillations in channeled snow flows

    Full text link
    An experimental device has been built to measure velocity profiles and friction laws in channeled snow flows. The measurements show that the velocity depends linearly on the vertical position in the flow and that the friction coefficient is a first-order polynomial in velocity (u) and thickness (h) of the flow. In all flows, oscillations on the surface of the flow were observed throughout the channel and measured at the location of the probes. The experimental results are confronted with a shallow water approach. Using a Saint-Venant modeling, we show that the flow is effectively uniform in the streamwise direction at the measurement location. We show that the surface oscillations produced by the Archimedes's screw at the top of the channel persist throughout the whole length of the channel and are the source of the measured oscillations. This last result provides good validation of the description of such channeled snow flows by a Saint-Venant modeling

    secCl is a cys-loop ion channel necessary for the chloride conductance that mediates hormone-induced fluid secretion in Drosophila

    Get PDF
    Organisms use circulating diuretic hormones to control water balance (osmolarity), thereby avoiding dehydration and managing excretion of waste products. The hormones act through G-protein-coupled receptors to activate second messenger systems that in turn control the permeability of secretory epithelia to ions like chloride. In insects, the chloride channel mediating the effects of diuretic hormones was unknown. Surprisingly, we find a pentameric, cys-loop chloride channel, a type of channel normally associated with neurotransmission, mediating hormone-induced transepithelial chloride conductance. This discovery is important because: 1) it describes an unexpected role for pentameric receptors in the membrane permeability of secretory epithelial cells, and 2) it suggests that neurotransmitter-gated ion channels may have evolved from channels involved in secretion

    Competing bounds on the present-day time variation of fundamental constants

    Full text link
    We compare the sensitivity of a recent bound on time variation of the fine structure constant from optical clocks with bounds on time varying fundamental constants from atomic clocks sensitive to the electron-to-proton mass ratio, from radioactive decay rates in meteorites, and from the Oklo natural reactor. Tests of the Weak Equivalence Principle also lead to comparable bounds on present variations of constants. The "winner in sensitivity" depends on what relations exist between the variations of different couplings in the standard model of particle physics, which may arise from the unification of gauge interactions. WEP tests are currently the most sensitive within unified scenarios. A detection of time variation in atomic clocks would favour dynamical dark energy and put strong constraints on the dynamics of a cosmological scalar field.Comment: ~4 Phys Rev page
    corecore