1,048 research outputs found

    An updated checklist of the scarab beetle fauna of Asinara Island, Sardinia, Italy (Coleoptera: Trogidae, Geotrupidae, Scarabaeidae, Aphodiidae, Cetoniidae, Dynastidae, Hybosoridae)

    Get PDF
    The island of Asinara, located in the northwest of Sardinia, is characterized by a large number of feral grazing mammals belonging to four herbivorous species (horse, donkey, mouflon, and goat) and an omnivorous one (wild boar). Hand-collections of scarabs in 2014 and the examination of unpublished records revealed the presence of five species new for Asinara (Trox nodulosus, Ateuchetus laticollis, Sisyphus schaefferi, Caccobius schreberi and Cetonia carthami). Based on all records (published and unpublished) we present a new checklist of the scarab beetle fauna of Asinara which increased from 30 to 43 species belonging to seven families: 2 Trogidae, 2 Geotrupidae, 13 Scarabaeidae, 19 Aphodiidae, 5 Cetoniidae, 1 Dynastidae, and 1 Hybosorida

    EXTENDING A MOBILE DEVICE WITH LOW-COST 3D MODELING AND BUILDING-SCALE MAPPING CAPABILITIES, FOR APPLICATION IN ARCHITECTURE AND ARCHAEOLOGY

    Get PDF
    One of the most challenging problem in architecture is the automated construction of 3D (and 4D) digital models of cultural objects with the aim of implementing open data repositories, scientifically authenticated and responding to well accepted standards of validation, evaluation, preservation, publication, updating and dissemination. The realization of such an ambitious objective requires the adoption of special technological instruments. In this paper we plan to use portable devices (i.e. smartphones, tablets or PDAs eventually extended to wearable ones), extended with a small plug-in, for automatically extracting 3D models of single objects and building-scale mapping of the surrounding environment. At the same time, the device will provide the capability of inserting notes and observations. Where the instrument cannot be directly applied, for example for exploring the top of a complex building, we consider mounting our device, or using equivalent existing equipment, on a drone, in a modular approach for obtaining data de-facto interchangeable. The approach based on the expansion packs has the advantage of anticipating (or even promoting) future extensions of new mobile devices, when the spectrum of possible applications justify the corresponding increased costs. In order to experiment and verify this approach we plan to test it in two specific scenarios of the cultural heritage domain in which such devices seem particularly promising: Strada Nuova in Genoa and Palazzo Ducale in Urbino, both located in Italy

    Harmonization and standardization of data for a pan-European cohort on SARS- CoV-2 pandemic

    Get PDF
    The European project ORCHESTRA intends to create a new pan-European cohort to rapidly advance the knowledge of the effects and treatment of COVID-19. Establishing processes that facilitate the merging of heterogeneous clusters of retrospective data was an essential challenge. In addition, data from new ORCHESTRA prospective studies have to be compatible with earlier collected information to be efficiently combined. In this article, we describe how we utilized and contributed to existing standard terminologies to create consistent semantic representation of over 2500 COVID-19-related variables taken from three ORCHESTRA studies. The goal is to enable the semantic interoperability of data within the existing project studies and to create a common basis of standardized elements available for the design of new COVID-19 studies. We also identified 743 variables that were commonly used in two of the three prospective ORCHESTRA studies and can therefore be directly combined for analysis purposes. Additionally, we actively contributed to global interoperability by submitting new concept requests to the terminology Standards Development Organizations

    Hannes Prosthesis Control Based on Regression Machine Learning Algorithms

    Get PDF
    The quality of life for upper limb amputees can be greatly improved by the adoption of poly-articulated myoelectric prostheses. Typically, in these applications, a pattern recognition algorithm is used to control the system by converting the recorded electromyographic activity (EMG) into complex multi-degrees of freedom (DoFs) movements. However, there is currently a trade-off between the intuitiveness of the control and the number of active DoFs. We here address this challenge by performing simultaneous multi-joint control of the Hannes system and testing several state-of-the-art classifiers to decode hand and wrist movements. The algorithms discriminated multi-DoF movements from forearm EMG signals of 10 healthy subjects reproducing hand opening-closing, wrist flexion-extension and wrist pronation-supination. We first explored the effect of the number of employed EMG electrodes on device performance through the classifiers optimization in terms of F1Score. We further improved classifiers by tuning their respective hyperparameters in terms of the Embedding Optimization Factor. Finally, three mono-lateral amputees tested the optimized algorithms to intuitively and simultaneously control the Hannes system. We found that the algorithms performances were similar to that of healthy subjects, particularly identifying the Non-Linear Regression classifier as the ideal candidate for prosthetic applications

    On the electromagnetic energy resolution of Cherenkov-fiber calorimeters

    Get PDF
    Electromagnetic calorimeters which sample the Cherenkov radiation of shower particles in optical fibers operate in a markedly different manner from calorimeters which rely on the dE/dx of shower particles. The well-understood physics of electromagnetic shower development is applied to the case of Cherenkov-fiber calorimetry (also known as quartz fiber calorimetry) and the results of systematically performed studies are considered in detail to derive an understanding of the critical parameters involved in energy measurement using such calorimeters. A quantitative parameterization of Cherenkov-fiber calorimetry electromagnetic energy resolution is proposed and compared with existing experimental results

    CMS Drift Tube Chambers Read-Out Electronics

    Get PDF
    With CMS installation nearing completion, the three levels of the final read-out system of the Drift Tube (DT) chambers are presented. First, are the Read Out Boards (ROB), responsible for time digitization of the signals generated by a charged particle track. Second, the Read Out Server (ROS) boards receive data from 25 ROB channels through a 240-Mbps copper link and perform data merging for further transmission through a 800 Mbps optical link. Finally, the Detector Dependent Units (DDU) merge data from 12 ROS to build an event fragment and send it to the global CMS DAQ through an S-LINK64 output at 320 MBps. DDUs also receive synchronization commands from the TTC system (Timing, Trigger, and Control), perform error detection on data, and send a fast feedback to the TTS (Trigger Throttling System). Functionality of these electronics has been validated in the laboratory and in several test-beams, including an exercise integrated with a fraction of the whole CMS detector and electronics that demonstrated proper operation and integration within the final CMS framework

    Towards the Fabrication of Polyelectrolyte-Based Nanocapsules for Bio-Medical Applications

    Get PDF
    © 2016, Springer Science+Business Media New York.The delivery and controlled release of drugs in the human body is one of the main research fields of nanotechnology applied to medicine. An ideal drug carrier should be able to deliver drug molecules to the site of action and to interact specifically with target cells. In this perspective, different organic and inorganic nanosystems have been proposed and tested. One of the most interesting techniques for the synthesis of drug carriers is represented by the layer-by-layer self-assembly (LbL) of nanoengineered shells onto sacrificial templates. However, this technique has been mostly applied for the fabrication of hollow microcapsules, while targeting single cells would require the fabrication of nanocapsules. LbL-based nanocapsules have been proposed in the literature using inorganic nanoparticles or polymeric ones as sacrificial templates, requiring the use of organic solvents for their removal. In the view of a perspective application of such nanocapsules, the use of biocompatible and biodegradable reagents plays a pivotal role. In this respect, recently, the possibility of synthesizing in a highly controlled way calcium carbonate nanoparticles has opened new perspectives for such kind of carrier systems
    corecore