324 research outputs found

    Asymptotic confidence interval for R2 in multiple linear regression

    Full text link
    Following White's approach of robust multiple linear regression, we give asymptotic confidence intervals for the multiple correlation coefficient R2 under minimal moment conditions. We also give the asymptotic joint distribution of the empirical estimators of the individual R2's. Through different sets of simulations, we show that the procedure is indeed robust (contrary to the procedure involving the near exact distribution of the empirical estimator of R2 is the multivariate Gaussian case) and can be also applied to count linear regression

    Homogeneous variational problems: a minicourse

    Get PDF
    A Finsler geometry may be understood as a homogeneous variational problem, where the Finsler function is the Lagrangian. The extremals in Finsler geometry are curves, but in more general variational problems we might consider extremal submanifolds of dimension mm. In this minicourse we discuss these problems from a geometric point of view.Comment: This paper is a written-up version of the major part of a minicourse given at the sixth Bilateral Workshop on Differential Geometry and its Applications, held in Ostrava in May 201

    Berry-Esseen type bounds for the Left Random Walk on GL d (R) under polynomial moment conditions

    Full text link
    Let An=εnε1A_n= \varepsilon_n \cdots \varepsilon_1, where (εn)n1(\varepsilon_n)_{n \geq 1} is a sequence of independent random matrices taking values in GLd(R) GL_d(\mathbb R), d2d \geq 2, with common distribution μ\mu. In this paper, under standard assumptions on μ\mu (strong irreducibility and proximality), we prove Berry-Esseen type theorems for log(An)\log ( \Vert A_n \Vert) when μ\mu has a polynomial moment. More precisely, we get the rate ((logn)/n)q/21((\log n) / n)^{q/2-1} when μ\mu has a moment of order q]2,3]q \in ]2,3] and the rate 1/n1/ \sqrt{n} when μ\mu has a moment of order 44, which significantly improves earlier results in this setting

    Asymptotic normality of the Parzen-Rosenblatt density estimator for strongly mixing random fields

    Get PDF
    We prove the asymptotic normality of the kernel density estimator (introduced by Rosenblatt (1956) and Parzen (1962)) in the context of stationary strongly mixing random fields. Our approach is based on the Lindeberg's method rather than on Bernstein's small-block-large-block technique and coupling arguments widely used in previous works on nonparametric estimation for spatial processes. Our method allows us to consider only minimal conditions on the bandwidth parameter and provides a simple criterion on the (non-uniform) strong mixing coefficients which do not depend on the bandwith.Comment: 16 page

    An extended quantitative model for super-resolution optical fluctuation imaging (SOFI)

    No full text
    Super-resolution optical fluctuation imaging (SOFI) provides super-resolution (SR) fluorescence imaging by analyzing fluctuations in the fluorophore emission. The technique has been used both to acquire quantitative SR images and to provide SR biosensing by monitoring changes in fluorophore blinking dynamics. Proper analysis of such data relies on a fully quantitative model of the imaging. However, previous SOFI imaging models made several assumptions that can not be realized in practice. In this work we address these limitations by developing and verifying a fully quantitative model that better approximates real-world imaging conditions. Our model shows that (i) SOFI images are free of bias, or can be made so, if the signal is stationary and fluorophores blink independently, (ii) allows a fully quantitative description of the link between SOFI imaging and probe dynamics, and (iii) paves the way for more advanced SOFI image reconstruction by offering a computationally fast way to calculate SOFI images for arbitrary probe, sample and instrumental properties

    On symmetries of Chern-Simons and BF topological theories

    Get PDF
    We describe constructing solutions of the field equations of Chern-Simons and topological BF theories in terms of deformation theory of locally constant (flat) bundles. Maps of flat connections into one another (dressing transformations) are considered. A method of calculating (nonlocal) dressing symmetries in Chern-Simons and topological BF theories is formulated

    Symmetries of Helmholtz forms and globally variational dynamical forms

    Full text link
    Invariance properties of classes in the variational sequence suggested to Krupka et al. the idea that there should exist a close correspondence between the notions of variationality of a differential form and invariance of its exterior derivative. It was shown by them that the invariance of a closed Helmholtz form of a dynamical form is equivalent with local variationality of the Lie derivative of the dynamical form, so that the latter is locally the Euler--Lagrange form of a Lagrangian. We show that the corresponding local system of Euler--Lagrange forms is variationally equivalent to a global Euler--Lagrange form.Comment: Presented at QTS7 - Quantum Theory and Symmetries VII, Prague 7-13/08/201

    Constraint algorithm for k-presymplectic Hamiltonian systems. Application to singular field theories

    Full text link
    The k-symplectic formulation of field theories is especially simple, since only tangent and cotangent bundles are needed in its description. Its defining elements show a close relationship with those in the symplectic formulation of mechanics. It will be shown that this relationship also stands in the presymplectic case. In a natural way, one can mimick the presymplectic constraint algorithm to obtain a constraint algorithm that can be applied to kk-presymplectic field theory, and more particularly to the Lagrangian and Hamiltonian formulations of field theories defined by a singular Lagrangian, as well as to the unified Lagrangian-Hamiltonian formalism (Skinner--Rusk formalism) for k-presymplectic field theory. Two examples of application of the algorithm are also analyzed.Comment: 22 p
    corecore