44 research outputs found

    Insect Repellents: Modulators of Mosquito Odorant Receptor Activity

    Get PDF
    Background: DEET, 2-undecanone (2-U), IR3535 and Picaridin are widely used as insect repellents to prevent interactions between humans and many arthropods including mosquitoes. Their molecular action has only recently been studied, yielding seemingly contradictory theories including odorant-dependent inhibitory and odorant-independent excitatory activities on insect olfactory sensory neurons (OSNs) and odorant receptor proteins (ORs). Methodology/Principal Findings: Here we characterize the action of these repellents on two Aedes aegypti ORs, AaOR2 and AaOR8, individually co-expressed with the common co-receptor AaOR7 in Xenopus oocytes; these ORs are respectively activated by the odors indole (AaOR2) and (R)-(2)-1-octen3-ol (AaOR8), odorants used to locate oviposition sites and host animals. In the absence of odorants, DEET activates AaOR2 but not AaOR8, while 2-U activates AaOR8 but not AaOR2; IR3535 and Picaridin do not activate these ORs. In the presence of odors, DEET strongly inhibits AaOR8 but not AaOR2, while 2-U strongly inhibits AaOR2 but not AaOR8; IR3535 and Picaridin strongly inhibit both ORs. Conclusions/Significance: These data demonstrate that repellents can act as olfactory agonists or antagonists, thus modulating OR activity, bringing concordance to conflicting models

    The History of Insect Repellents

    No full text

    Efficacy of a new self-supporting low-profile bednet for personal protection against Anopheles farauti (Diptera : Culicidae) in a village in Papua New Guinea

    No full text
    A new United States (U.S.) self-supporting low-profile bednet was designed by Walter Reed Army Institute of Research in collaboration with Breakthrough Technologies. The bednet incorporated permethrin-impregnated screening into a frame that erected automatically when removed from its bag. The new U.S. bednet was compared with the current Australian Defense Force (ADF) mosquito bednet at Buka Island, North Solomons Province, Papua New Guinea, in March 1999. At the time of the test, Anopheles farauti Laveran was the most abundant biting mosquito. Both bednet types provided > 97.8% protection compared with an unprotected collector. The untreated U.S. Army prototype bednet provided better protection than the untreated ADF bednet against mosquitoes entering the bednet during the night

    Zika Virus Vector Competency of Mosquitoes, Gulf Coast, United States

    No full text
    Zika virus has recently spread throughout the Americas. Although Aedes aegypti mosquitoes are considered the primary vector, Culex quinquefasciatus and mosquitoes of other species may also be vectors. We tested Cx. quinquefasciatus and Ae. taeniorhynchus mosquitoes from the US Gulf Coast; both were refractory to infection and incapable of transmission

    Microbiome Interaction Networks and Community Structure From Laboratory-Reared and Field-Collected Aedes aegypti, Aedes albopictus, and Culex quinquefasciatus Mosquito Vectors

    Get PDF
    <p>Microbial interactions are an underappreciated force in shaping insect microbiome communities. Although pairwise patterns of symbiont interactions have been identified, we have a poor understanding regarding the scale and the nature of co-occurrence and co-exclusion interactions within the microbiome. To characterize these patterns in mosquitoes, we sequenced the bacterial microbiome of Aedes aegypti, Ae. albopictus, and Culex quinquefasciatus caught in the field or reared in the laboratory and used these data to generate interaction networks. For collections, we used traps that attracted host-seeking or ovipositing female mosquitoes to determine how physiological state affects the microbiome under field conditions. Interestingly, we saw few differences in species richness or microbiome community structure in mosquitoes caught in either trap. Co-occurrence and co-exclusion analysis identified 116 pairwise interactions substantially increasing the list of bacterial interactions observed in mosquitoes. Networks generated from the microbiome of Ae. aegypti often included highly interconnected hub bacteria. There were several instances where co-occurring bacteria co-excluded a third taxa, suggesting the existence of tripartite relationships. Several associations were observed in multiple species or in field and laboratory-reared mosquitoes indicating these associations are robust and not influenced by environmental or host factors. To demonstrate that microbial interactions can influence colonization of the host, we administered symbionts to Ae. aegypti larvae that either possessed or lacked their resident microbiota. We found that the presence of resident microbiota can inhibit colonization of particular bacterial taxa. Our results highlight that microbial interactions in mosquitoes are complex and influence microbiome composition.</p
    corecore