766 research outputs found

    A vaccine formulated with the major outer membrane protein can protect C3H/HeN, a highly susceptible strain of mice, from a Chlamydia muridarum genital challenge.

    Get PDF
    C3H/HeN female mice were vaccinated with native Chlamydia muridarum major outer membrane protein (MOMP), using Montanide+CpG or Alum+CpG as adjuvants. Negative control groups were immunized with ovalbumin (OVA) and the same adjuvants. As positive control, mice were inoculated intranasally with live Chlamydia. Mice were challenged in the ovarian bursa with 10(5) C. muridarum inclusion forming units. Six weeks after the genital challenge the animals were caged with male mice and monitored for pregnancy. Mice vaccinated with MOMP+Montanide+CpG developed high levels of C. muridarum-specific antibodies, with a high IgG2a/IgG1 ratio and neutralizing titres. Animals immunized using Alum+CpG had low antibody levels. Cellular immune responses were significantly higher in mice vaccinated with MOMP and Montanide+CpG, but not with Alum+CpG, when compared with negative controls. Following the genital challenge, only 20% (4/20) of mice vaccinated with MOMP+CpG+Montanide had positive vaginal cultures whereas 100% (9/9) of mice immunized with MOMP+CpG+Alum had positive cultures. Of the positive control animals inoculated with live Chlamydia only 15% (3/20) had positive vaginal cultures. In contrast, 100% (20/20) of mice immunized with OVA+CpG+Montanide, or minimal essential medium, had positive cultures. Following mating, 80% (16/20) of mice vaccinated with MOMP+CpG+Montanide, and 85% (17/20) of animals inoculated intranasally with live C. muridarum carried embryos in both uterine horns. No protection against infertility was observed in mice immunized with MOMP and CpG+Alum or OVA. In conclusion, this is the first time that a subunit vaccine has been shown to elicit a protective immune response in the highly susceptible C3H/HeN strain of mice against an upper genital challenge

    Metallo-organic ensembles of tritopic subphthalocyanine ligands

    Full text link
    "This is the peer reviewed version of the following article: M. Ángel Revuelta-Maza, Ettore Fazio, Gema de la Torre and Tomás Torres, Metallo-organic ensembles of tritopic subphthalocyanine ligands, Journal of Porphyrins and PhthalocyaninesVol. 21, No. 12, pp. 782-789 (2017), which has been published in final form at https://doi.org/10.1142/S1088424617500882I. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Use Self-Archived Versions"Organic building blocks containing amines and aldehydes can be used for the preparation of complex metallo-organic structures, such as M2L3 triple helicates or face-capped M4L4 tetrahedral cages, through the formation of both dynamic covalent and coordinative linkages during the self-Assembly process. Herein we describe how the subcomponent self-Assembly method can be succesfully applied over a triamine-functionalized subphthalocyanine (SubPc) ligand to build metallo-supramolecular helicates. Two isomeric SubPcs (C1-SubPc1 and C3-SubPc1) have been prepared from the corresponding C1-SubPcI3 and C3-SubPcI3 precursors under optimized Suzuki conditions. We selected the tritopic C3-SubPc1 derivative as ligand for the subcomponent self-Assembly experiments, which involved the reaction with 2-formylpyridine and different Fe(II) salts. The self-Assembly process was mainly studied by mass spectrometry (ESI direct injection techniques), and in all the conditions applied, we could observe the formation of helicate-Type Fe2SubPc3 structures and/or Fe2SubPc4 species, which can be considered as open precursors of Fe4SubPc4 tetrahedral cages. © 2017 World Scientific Publishing Company.Financial support from Comunidad de Madrid, Spain (S2013/MIT- 2841, FOTOCARBON), and Spanish MICINN (CTQ2014-52869-P) is acknowledged
    corecore