6,387 research outputs found
Pressure Shifts in High-Precision Hydrogen Spectroscopy: I. Long-Range Atom-Atom and Atom-Molecule Interactions
We study the theoretical foundations for the pressure shifts in
high-precision atomic beam spectrosopy of hydrogen, with a particular emphasis
on transitions involving higher excited P states. In particular, the long-range
interaction of an excited hydrogen atom in a 4P state with a ground-state and
metastable hydrogen atom is studied, with a full resolution of the hyperfine
structure. It is found that the full inclusion of the 4P_1/2 and 4P_3/2
manifolds becomes necessary in order to obtain reliable theoretical
predictions, because the 1S ground state hyperfine frequency is commensurate
with the 4P fine-structure splitting. An even more complex problem is
encountered in the case of the 4P-2S interaction, where the inclusion of
quasi-degenerate 4S-2P_1/2 state becomes necessary in view of the dipole
couplings induced by the van der Waals Hamiltonian. Matrices of dimension up to
40 have to be treated despite all efforts to reduce the problem to irreducible
submanifolds within the quasi-degenerate basis. We focus on the
phenomenologically important second-order van der Waals shifts, proportional to
1/R^6 where R is the interatomic distance, and obtain results with full
resolution of the hyperfine structure. The magnitude of van der Waals
coefficients for hydrogen atom-atom collisions involving excited P states is
drastically enhanced due to energetic quasi-degeneracy; we find no such
enhancement for atom-molecule collisions involving atomic nP states, even if
the complex molecular spectrum involving ro-vibrational levels requires a
deeper analysis.Comment: 32 pages; 2 figures; this is part 1 of a series of two papers; part 1
carries article number 075005, while part 2 carries article number 075006 in
the journal (online journal version has been rectified). arXiv admin note:
text overlap with arXiv:1711.1003
Associations between Fitness Measures and Change of Direction Speeds with and without Occupational Loads in Female Police Officers
Female police officers may be required to pursue offenders on foot while wearing occupational loads. The aim of this study was to determine relationships between fitness measures and change of direction speed (CODS) in female police officers and the influence of their occupational loads. Retrospective data were provided for 27 female police officers (age = 32.19 ± 5.09 y, height = 162.78 ± 5.01 cm, and mass = 71.31 ± 13.42 kg) and included fitness measures of: lower-body power (standing long jump (SLJ)), upper-body and trunk muscle endurance (push-up (PU) and sit-up (SU)), aerobic power (estimated VO2max), and CODS (Illinois agility test). The CODS test was performed without and with occupational load (10 kg). Paired sample t-tests (between-load conditions) and Pearson's correlations (relationships between measures) were performed with linear regression analysis used to account for the contribution of measures to unloaded and loaded CODS performance. CODS was significantly slower when loaded (unloaded = ~23.17 s, loaded = ~24.14 s, p < 0.001) with a strong, significant relationship between load conditions (r = 0.956, p < 0.001). Moderate to strong, significant relationships were found between all fitness measures ranging from estimated VO2max (r = -0.448) to SU (r = -0.673) in the unloaded condition, with the strength of these relationships increasing in the loaded condition accounting for 61% to 67% of the variance, respectively. While unloaded agility test performance was strongly associated with loaded performance, female police officer CODS was significantly reduced when carrying occupational loads. A variety of fitness measures that influence officer CODS performances become increasingly important when occupational loads are carried
Waist Circumference and Waist-to-Hip Ratio in Law Enforcement Agency Recruits: Relationship to Performance in Physical Fitness Tests
Curved Gratings as Plasmonic Lenses for Linearly Polarised Light
The ability of curved gratings as sectors of concentric circular gratings to
couple linearly polarized light into focused surface plasmons is investigated
by theory, simulation and experiment. Curved gratings, as sectors of concentric
circular gratings with four different sector angles, are etched into a 30-nm
thick gold layer on a glass coverslip and used to couple linearly-polarised
free space light at nm into surface plasmons. The experimental and simulation
results show that increasing the sector angle of the curved gratings decreases
the lateral spotsize of the excited surface plasmons, resulting in focussing of
surface plasmons which is analogous to the behaviour of classical optical
lenses. We also show that two faced curved gratings, with their groove radius
mismatched by half of the plasmon wavelength (asymmetric configuration), can
couple linearly-polarised light into a single focal spot of concentrated
surface plasmons with smaller depth of focus and higher intensity in comparison
to single-sided curved gratings. The major advantage of these structures is the
coupling of linearly-polarised light into focused surface plasmons with access
to and control of the plasmon focal spot, which facilitates potential
applications in sensing, detection and nonlinear plasmonics.Comment: 15 pages and 12 figure
What’s stopping you? The relationship between barriers, self-efficacy, and physical activity levels in incumbent deputy sheriffs
The Driving Force: Relationships between Motivation, Physical Activity, Resistance Training, and Years Sworn in Incumbent Deputy Sheriffs
Time Spent Working in Custody Influences Work Sample Test Battery Performance of Deputy Sheriffs Compared to Recruits
This study determined the influence of years spent working in custody on fitness measured by a state-specific testing battery (Work Sample Test Battery; WSTB) in deputy sheriffs. Retrospective analysis was conducted on one patrol school class (51 males, 13 females) divided into three groups depending on time spent working in custody: DS24 (<24 months; n = 20); DS2547 (25–47 months; n = 23); and DS48+ (≥48 months; n = 21). These groups were compared to a recruit class (REC; 219 males, 34 females) in the WSTB, which comprised five tasks completed for time: 99-yard (90.53-m) obstacle course (99OC); 165-pound (75-kg) dummy drag; six-foot (1.83-m) chain link fence (CLF) and solid wall (SW) climb; and 500-yard (457.2-m) run (500R). A univariate analysis of covariance (ANCOVA) (controlling for sex and age) with Bonferroni post hoc determined significant between-group differences. DS48+ were slower in the 99OC compared to the REC (p = 0.007) and performed the CLF and SW slower than all groups (p ≤ 0.012). DS24, DS2547, and DS48+ were all slower than REC in the 500R (p ≤ 0.002). Physical training should be implemented to maintain fitness and job-specific task performance in deputy sheriffs working custody, especially considering the sedentary nature of this work
Difference in Physical Characteristics and Fitness of Recruits from Smaller Versus Larger Law Enforcement Agencies
- …
