57,100 research outputs found
SCUBA polarisation observations of the magnetic fields in the prestellar cores L1498 and L1517B
We have mapped linearly polarized dust emission from the prestellar cores
L1498 and L1517B with the James Clerk Maxwell Telescope (JCMT) using the
Submillimetre Common User Bolometer Array (SCUBA) and its polarimeter SCUBAPOL
at a wavelength of 850um. We use these measurements to determine the
plane-of-sky magnetic field orientation in the cores. In L1498 we see a
magnetic field across the peak of the core that lies at an offset of 19 degrees
to the short axis of the core. This is similar to the offsets seen in previous
observations of prestellar cores. To the southeast of the peak, in the
filamentary tail of the core, we see that the magnetic field has rotated to lie
almost parallel to the long axis of the filament. We hypothesise that the field
in the core may have decoupled from the field in the filament that connects the
core to the rest of the cloud. We use the Chandrasekhar-Fermi (CF) method to
measure the plane-of-sky field strength in the core of L1498 to be 10 +/- 7 uG.
In L1517B we see a more gradual turn in the field direction from the northern
part of the core to the south. This appears to follow a twist in the filament
in which the core is buried, with the field staying at a roughly constant 25
degree offset to the short axis of the filament, also consistent with previous
observations of prestellar cores. We again use the CF method and calculate the
magnetic field strength in L1517B also to be 30 +/- 10 uG. Both cores appear to
be roughly virialised. Comparison with our previous work on somewhat denser
cores shows that, for the denser cores, thermal and non-thermal (including
magnetic) support are approximately equal, while for the lower density cores
studied here, thermal support dominates.Comment: 6 pages, 2 figures; accepted for publication by MNRA
Arecibo Observatory support of the US international cometary Explorer mission encounter at comet Giacobini-Zinner
The Arecibo Observatory in Puerto Rico participated in the support of the U.S. International Cometary Explorer (ICE) mission when the ICE spacecraft passed through the tail of comet Giacobini-Zinner on September 11, 1985. The Arecibo Observatory is a research facility of the National Astronomy and Ionosphere Center (NAIC) operated by Cornell University under contract to the National Science Foundation (NSF). Coverage of the encounter involved the use of the observatory's 305-m (1000-ft) radio reflector antenna and RF and data system equipment fabricated or modified specifically for support of the ICE mission. The successful implementation, testing, and operation of this temporary receive, record, and data relay capability resulted from a cooperative effort by personnel at the Arecibo Observatory, the Goddard Space Flight Center, and the Jet Propulsion Laboratory
Raw Multi-Channel Audio Source Separation using Multi-Resolution Convolutional Auto-Encoders
Supervised multi-channel audio source separation requires extracting useful
spectral, temporal, and spatial features from the mixed signals. The success of
many existing systems is therefore largely dependent on the choice of features
used for training. In this work, we introduce a novel multi-channel,
multi-resolution convolutional auto-encoder neural network that works on raw
time-domain signals to determine appropriate multi-resolution features for
separating the singing-voice from stereo music. Our experimental results show
that the proposed method can achieve multi-channel audio source separation
without the need for hand-crafted features or any pre- or post-processing
A study of planar Richtmyer-Meshkov instability in fluids with Mie-Grüneisen equations of state
We present a numerical comparison study of planar Richtmyer-Meshkov instability with the intention of exposing the role of the equation of state. Results for Richtmyer-Meshkov instability in fluids with Mie-Grüneisen equations of state derived from a linear shock-particle speed Hugoniot relationship (Jeanloz, J. Geophys. Res. 94, 5873, 1989; McQueen et al., High Velocity Impact Phenomena (1970), pp. 294–417; Menikoff and Plohr, Rev. Mod. Phys. 61(1), 75 1989) are compared to those from perfect gases under nondimensionally matched initial conditions at room temperature and pressure. The study was performed using Caltech’s Adaptive Mesh Refinement, Object-oriented C++ (AMROC) (Deiterding, Adaptive Mesh Refinement: Theory and Applications (2005), Vol. 41, pp. 361–372; Deiterding, “Parallel adaptive simulation of multi-dimensional detonation structures,” Ph.D. thesis (Brandenburgische Technische Universität Cottbus, September 2003)) framework with a low-dissipation, hybrid, center-difference, limiter patch solver (Ward and Pullin, J. Comput. Phys. 229, 2999 (2010)). Results for single and triple mode planar Richtmyer-Meshkov instability when a reflected shock wave occurs are first examined for mid-ocean ridge basalt (MORB) and molybdenum modeled by Mie-Grüneisen equations of state. The single mode case is examined for incident shock Mach numbers of 1.5 and 2.5. The planar triple mode case is studied using a single incident Mach number of 2.5 with initial corrugation wavenumbers related by k_1 = k_2+k_3. Comparison is then drawn to Richtmyer-Meshkov instability in perfect gases with matched nondimensional pressure jump across the incident shock, post-shock Atwood ratio, post-shock amplitude-to-wavelength ratio, and time nondimensionalized by Richtmyer’s linear growth time constant prediction. Differences in start-up time and growth rate oscillations are observed across equations of state. Growth rate oscillation frequency is seen to correlate directly to the oscillation frequency for the transmitted and reflected shocks. For the single mode cases, further comparison is given for vorticity distribution and corrugation centerline shortly after shock interaction. Additionally, we examine single mode Richtmyer-Meshkov instability when a reflected expansion wave is present for incident Mach numbers of 1.5 and 2.5. Comparison to perfect gas solutions in such cases yields a higher degree of similarity in start-up time and growth rate oscillations. The formation of incipient weak waves in the heavy fluid driven by waves emanating from the perturbed transmitted shock is observed when an expansion wave is reflected
Molecular gas freeze-out in the pre-stellar core L1689B
C17O (J=2-1) observations have been carried out towards the pre-stellar core
L1689B. By comparing the relative strengths of the hyperfine components of this
line, the emission is shown to be optically thin. This allows accurate CO
column densities to be determined and, for reference, this calculation is
described in detail. The hydrogen column densities that these measurements
imply are substantially smaller than those calculated from SCUBA dust emission
data. Furthermore, the C17O column densities are approximately constant across
L1689B whereas the SCUBA column densities are peaked towards the centre. The
most likely explanation is that CO is depleted from the central regions of
L1689B. Simple models of pre-stellar cores with an inner depleted region are
compared with the results. This enables the magnitude of the CO depletion to be
quantified and also allows the spatial extent of the freeze-out to be firmly
established. We estimate that within about 5000 AU of the centre of L1689B,
over 90% of the CO has frozen onto grains. This level of depletion can only be
achieved after a duration that is at least comparable to the free-fall
timescale.Comment: MNRAS letters. 5 pages, 5 figure
First Observations of the Magnetic Field Geometry in Pre-stellar Cores
We present the first published maps of magnetic fields in pre-stellar cores,
to test theoretical ideas about the way in which the magnetic field geometry
affects the star formation process. The observations are JCMT-SCUBA maps of 850
micron thermal emission from dust. Linear polarizations at typically ten or
more independent positions in each of three objects, L1544, L183 and L43 were
measured, and the geometries of the magnetic fields in the plane of the sky
were mapped from the polarization directions. The observed polarizations in all
three objects appear smooth and fairly uniform. In L1544 and L183 the mean
magnetic fields are at an angle of around 30 degrees to the minor axes of the
cores. The L43 B-field appears to have been influenced in its southern half,
such that it is parallel to the wall of a cavity produced by a CO outflow from
a nearby T Tauri star, whilst in the northern half the field appears less
disturbed and has an angle of 44 degrees to the core minor axis. We briefly
compare our results with published models of magnetized cloud cores and
conclude that no current model can explain these observations simultaneously
with previous ISOCAM data.Comment: 13 pages, 3 figs, to appear in ApJ Letter
Recommended from our members
New and emerging technologies for the treatment of inherited retinal diseases: a horizon scanning review.
The horizon scanning review aimed to identify new and emerging technologies in development that have the potential to slow or stop disease progression and/or reverse sight loss in people with inherited retinal diseases (IRDs). Potential treatments were identified using recognized horizon scanning methods. These included a combination of online searches using predetermined search terms, suggestions from clinical experts and patient and carer focus groups, and contact with commercial developers. Twenty-nine relevant technologies were identified. These included 9 gene therapeutic approaches, 10 medical devices, 5 pharmacological agents, and 5 regenerative and cell therapies. A further 11 technologies were identified in very early phases of development (typically phase I or pre-clinical) and were included in the final report to give a complete picture of developments 'on the horizon'. Clinical experts and patient and carer focus groups provided helpful information and insights, such as the availability of specialised services for patients, the potential impacts of individual technologies on people with IRDs and their families, and helped to identify additional relevant technologies. This engagement ensured that important areas of innovation were not missed. Most of the health technologies identified are still at an early stage of development and it is difficult to estimate when treatments might be available. Further, well designed trials that generate data on efficacy, applicability, acceptability, and costs of the technologies, as well as the long-term impacts for various conditions are required before these can be considered for adoption into routine clinical practice
A comparison of operationally determined atmospheric densities from satellite orbit solutions and the exospheric temperature from the Jacchia-Roberts model
Operational orbit determination by the Flight Dynamics Division at the Goddard Space Flight Center has yielded a data base of orbit solutions covering the onset of solar cycle 22. Solutions for nine satellites include an estimated drag adjustment parameter (rho sub 1) determined by the Goddard Trajectory Determination System (GTDS). The rho sub 1 is used to evaluate correlations between density variations and changes in the following: 10.7-centimeter wavelength solar flux (F sub 10.7), the geomagnetic index A sub p, and two exospheric temperatures (T sub c and T sub infinity) adapted from the Jacchia-Roberts atmospheric density model in GTDS. T sub c depends on the daily and 81-day centered mean F sub 10.7; T sub infinity depends on T sub c and the geomagnetic index K sub p values. The highest correlations are between density and T sub infinity. Correlations with T sub c and F sub 10.7 are lower by 9 and 10 percent, respectively. For most cases, correlations with A sub p are considerably lower; however, significant correlations with A sub p were found for some high-inclination, moderate-altitude orbits. Results from this analysis enhance the understanding of the drag model and the accommodation of atmospheric density variations in the operational orbit determination support. The degree of correlation demonstrates the sensitivity of the orbit determination process to drag variations and to the input parameters that characterize aspects of the atmospheric density model. To this extent, the degree of correlation provides a measure of performance for methods of selecting or modeling the thermospheric densities using the solar F sub 10.7 and geomagnetic data as input to the process
- …
