260,048 research outputs found

    The A+B -> 0 annihilation reaction in a quenched random velocity field

    Full text link
    Using field-theoretic renormalization group methods the long-time behaviour of the A+B -> 0 annihilation reaction with equal initial densities n_A(0) = n_B(0) = n_0 in a quenched random velocity field is studied. At every point (x, y) of a d-dimensional system the velocity v is parallel or antiparallel to the x-axis and depends on the coordinates perpendicular to the flow. Assuming that v(y) have zero mean and short-range correlations in the y-direction we show that the densities decay asymptotically as n(t) ~ A n_0^(1/2) t^(-(d+3)/8) for d<3. The universal amplitude A is calculated at first order in \epsilon = 3-d.Comment: 19 pages, LaTeX using IOP-macros, 5 eps-figures. It is shown that the amplitude of the density is universal, i.e. independent of the reaction rat

    A New Experiment to Study Hyperon CP Violation and the Charmonium System

    Full text link
    Fermilab operates the world's most intense antiproton source, now exclusively dedicated to serving the needs of the Tevatron Collider. The anticipated 2009 shutdown of the Tevatron presents the opportunity for a world-leading low- and medium-energy antiproton program. We summarize the status of the Fermilab antiproton facility and review physics topics for which a future experiment could make the world's best measurements.Comment: 16 pages, 3 figures, to appear in Proceedings of CTP symposium on Supersymmetry at LHC: Theoretical and Experimental Perspectives, The British University in Egypt, Cairo, Egypt, 11-14 March 200

    A paradigmatic flow for small-scale magnetohydrodynamics: properties of the ideal case and the collision of current sheets

    Get PDF
    We propose two sets of initial conditions for magnetohydrodynamics (MHD) in which both the velocity and the magnetic fields have spatial symmetries that are preserved by the dynamical equations as the system evolves. When implemented numerically they allow for substantial savings in CPU time and memory storage requirements for a given resolved scale separation. Basic properties of these Taylor-Green flows generalized to MHD are given, and the ideal non-dissipative case is studied up to the equivalent of 2048^3 grid points for one of these flows. The temporal evolution of the logarithmic decrements, delta, of the energy spectrum remains exponential at the highest spatial resolution considered, for which an acceleration is observed briefly before the grid resolution is reached. Up to the end of the exponential decay of delta, the behavior is consistent with a regular flow with no appearance of a singularity. The subsequent short acceleration in the formation of small magnetic scales can be associated with a near collision of two current sheets driven together by magnetic pressure. It leads to strong gradients with a fast rotation of the direction of the magnetic field, a feature also observed in the solar wind.Comment: 8 pages, 4 figure

    A Quantum Many-Body Instability in the Thermodynamic Limit

    Full text link
    Intrinsic decoherence in the thermodynamic limit is shown for a large class of many-body quantum systems in the unitary evolution in NMR and cavity QED. The effect largely depends on the inability of the system to recover the phases. Gaussian decaying in time of the fidelity is proved for spin systems and radiation-matter interaction.Comment: 11 pages, 1 figure. Final version accepted for publication in Modern Physics Letters

    Validation of the inverted adsorption structure for free-base tetraphenyl porphyrin on Cu(111)

    Get PDF
    Utilising normal incidence X-ray standing waves we rigourously scrutinise the “inverted model” as the adsorption structure of free-base tetraphenyl porphyrin on Cu(111). We demonstrate that the iminic N atoms are anchored at near-bridge adsorption sites on the surface displaced laterally by 1.1 ± 0.2 Å in excellent agreement with previously published calculations

    Large scale emergent properties of an autocatalytic reaction-diffusion model subject to noise

    Get PDF
    The non-equilibrium dynamic fluctuations of a stochastic version of the Gray-Scott (GS) model are studied analytically in leading order in perturbation theory by means of the dynamic renormalization group. There is an attracting stable fixed point at one-loop order, and the asymptotic scaling of the correlation functions is predicted for both spatial and temporally correlated noise sources. New effective three-body reaction terms, not present in the original GS model, are induced by the combined interplay of the fluctuations and nonlinearities.Comment: 13 pages, 2 figure

    Kinetic Regimes and Cross-Over Times in Many-Particle Reacting Systems

    Full text link
    We study kinetics of single species reactions ("A+A -> 0") for general local reactivity Q and dynamical exponent z (rms displacement x_t ~ t^{1/z}.) For small molecules z=2, whilst z=4,8 for certain polymer systems. For dimensions d above the critical value d_c=z, kinetics are always mean field (MF). Below d_c, the density n_t initially follows MF decay, n_0 - n_t ~ n_0^2 Q t. A 2-body diffusion-controlled regime follows for strongly reactive systems (Q>Qstar ~ n_0^{(z-d)/d}) with n_0 - n_t ~ n_0^2 x_t^d. For Q<Qstar, MF kinetics persist, with n_t ~ 1/Qt. In all cases n_t ~ 1/x_t^d at the longest times. Our analysis avoids decoupling approximations by instead postulating weak physically motivated bounds on correlation functions.Comment: 10 pages, 1 figure, uses bulk2.sty, minor changes, submitted to Europhysics Letter
    corecore