260,048 research outputs found
The A+B -> 0 annihilation reaction in a quenched random velocity field
Using field-theoretic renormalization group methods the long-time behaviour
of the A+B -> 0 annihilation reaction with equal initial densities n_A(0) =
n_B(0) = n_0 in a quenched random velocity field is studied. At every point (x,
y) of a d-dimensional system the velocity v is parallel or antiparallel to the
x-axis and depends on the coordinates perpendicular to the flow. Assuming that
v(y) have zero mean and short-range correlations in the y-direction we show
that the densities decay asymptotically as n(t) ~ A n_0^(1/2) t^(-(d+3)/8) for
d<3. The universal amplitude A is calculated at first order in \epsilon = 3-d.Comment: 19 pages, LaTeX using IOP-macros, 5 eps-figures. It is shown that the
amplitude of the density is universal, i.e. independent of the reaction rat
A New Experiment to Study Hyperon CP Violation and the Charmonium System
Fermilab operates the world's most intense antiproton source, now exclusively
dedicated to serving the needs of the Tevatron Collider. The anticipated 2009
shutdown of the Tevatron presents the opportunity for a world-leading low- and
medium-energy antiproton program. We summarize the status of the Fermilab
antiproton facility and review physics topics for which a future experiment
could make the world's best measurements.Comment: 16 pages, 3 figures, to appear in Proceedings of CTP symposium on
Supersymmetry at LHC: Theoretical and Experimental Perspectives, The British
University in Egypt, Cairo, Egypt, 11-14 March 200
A paradigmatic flow for small-scale magnetohydrodynamics: properties of the ideal case and the collision of current sheets
We propose two sets of initial conditions for magnetohydrodynamics (MHD) in
which both the velocity and the magnetic fields have spatial symmetries that
are preserved by the dynamical equations as the system evolves. When
implemented numerically they allow for substantial savings in CPU time and
memory storage requirements for a given resolved scale separation. Basic
properties of these Taylor-Green flows generalized to MHD are given, and the
ideal non-dissipative case is studied up to the equivalent of 2048^3 grid
points for one of these flows. The temporal evolution of the logarithmic
decrements, delta, of the energy spectrum remains exponential at the highest
spatial resolution considered, for which an acceleration is observed briefly
before the grid resolution is reached. Up to the end of the exponential decay
of delta, the behavior is consistent with a regular flow with no appearance of
a singularity. The subsequent short acceleration in the formation of small
magnetic scales can be associated with a near collision of two current sheets
driven together by magnetic pressure. It leads to strong gradients with a fast
rotation of the direction of the magnetic field, a feature also observed in the
solar wind.Comment: 8 pages, 4 figure
A Quantum Many-Body Instability in the Thermodynamic Limit
Intrinsic decoherence in the thermodynamic limit is shown for a large class
of many-body quantum systems in the unitary evolution in NMR and cavity QED.
The effect largely depends on the inability of the system to recover the
phases. Gaussian decaying in time of the fidelity is proved for spin systems
and radiation-matter interaction.Comment: 11 pages, 1 figure. Final version accepted for publication in Modern
Physics Letters
Validation of the inverted adsorption structure for free-base tetraphenyl porphyrin on Cu(111)
Utilising normal incidence X-ray standing waves we rigourously scrutinise the “inverted model” as the adsorption structure of free-base tetraphenyl porphyrin on Cu(111). We demonstrate that the iminic N atoms are anchored at near-bridge adsorption sites on the surface displaced laterally by 1.1 ± 0.2 Å in excellent agreement with previously published calculations
Large scale emergent properties of an autocatalytic reaction-diffusion model subject to noise
The non-equilibrium dynamic fluctuations of a stochastic version of the
Gray-Scott (GS) model are studied analytically in leading order in perturbation
theory by means of the dynamic renormalization group. There is an attracting
stable fixed point at one-loop order, and the asymptotic scaling of the
correlation functions is predicted for both spatial and temporally correlated
noise sources. New effective three-body reaction terms, not present in the
original GS model, are induced by the combined interplay of the fluctuations
and nonlinearities.Comment: 13 pages, 2 figure
Kinetic Regimes and Cross-Over Times in Many-Particle Reacting Systems
We study kinetics of single species reactions ("A+A -> 0") for general local
reactivity Q and dynamical exponent z (rms displacement x_t ~ t^{1/z}.) For
small molecules z=2, whilst z=4,8 for certain polymer systems. For dimensions d
above the critical value d_c=z, kinetics are always mean field (MF). Below d_c,
the density n_t initially follows MF decay, n_0 - n_t ~ n_0^2 Q t. A 2-body
diffusion-controlled regime follows for strongly reactive systems (Q>Qstar ~
n_0^{(z-d)/d}) with n_0 - n_t ~ n_0^2 x_t^d. For Q<Qstar, MF kinetics persist,
with n_t ~ 1/Qt. In all cases n_t ~ 1/x_t^d at the longest times. Our analysis
avoids decoupling approximations by instead postulating weak physically
motivated bounds on correlation functions.Comment: 10 pages, 1 figure, uses bulk2.sty, minor changes, submitted to
Europhysics Letter
- …
