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Large-scale emergent properties of an autocatalytic reaction-diffusion model subject to noise
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The nonequilibrium dynamic fluctuations of a stochastic version of the Gray-Scott~GS! model are studied
analytically in leading order in perturbation theory by means of the dynamic renormalization group. There is an
attracting stable fixed point at one-loop order, and the asymptotic scaling of the correlation functions is
predicted for both spatial and temporally correlated noise sources. New effective three-body reaction terms, not
present in the original GS model, are induced by the combined interplay of the fluctuations and nonlinearities.
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I. INTRODUCTION

The problem of pattern formation is a multidisciplina
challenge of great technological and scientific interest,
has been studied extensively in recent years by physic
chemists, biologists, materials scientists, and others@1#.
Much of the work to date has been devoted largely to gen
aspects of pattern-forming instabilities, pattern selecti
waves and fronts, and direct numerical simulation of the i
alized deterministic equations modeling the phenomena
der study@2#. In this approach to modeling, it is reasonab
to assume a continuum and coarse-grained description
the dynamic variables~degrees of freedom! and the model
equations are frequently, though not always, of the react
diffusion type. Thus, one begins by writing down some s
cific deterministic model equations. This may be regarded
the phenomenological approach to the problem. Howeve
first principles derivation of the dynamical equations is o
tained by removing the fast or short wavelength degree
freedom from the microscopic description, and this proc
leads to unavoidable noise terms, representing the effec
internal fluctuations, which result from this small-sca
elimination step@3#. Additionally, in the study of complex
phenomena, there is typically no precise knowledge of m
of the microscopic details, nor of the initial or bounda
conditions needed to provide a complete description of
problem. The dynamics may also evolve in a medium~such
as a background fluid! which provides external perturbation
environmental noise, and unpredictable disturbances. Ne
theless, one is interested in an explicit understanding of
system at long wavelengths. For all these reasons, it is n
ral to consider the influence of random noise on otherw
deterministic models and to study stochastic reacti
diffusion equations.

One of the simplest models of biochemical relevan
leading to spatial and temporal patterns when diffusion
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included is that due to Gray and Scott@4#. Numerical simu-
lations of deterministic systems have revealed a surprisin
large set of hitherto unknown complex and irregular patte
@5#. Because of the above considerations, and in regard
these recent findings, three questions that immediately c
to mind are as follows:~a! How do the fluctuations affect the
stability of an established pattern?,~b! What are the emer-
gent properties, due to fluctuation effects, of such a system
long wavelengths?~c! How do the deterministic and stocha
tic effects compete? The purpose of this paper is to formu
carefully an analytic answer to the second question pose
~b!. The latter will be carried out with the help of the dy
namic renormalization group~RG!. The questions raised in
~a! and~c!, of how noise influences pattern selection, will b
investigated numerically and will be presented elsewhe
Striking numerical evidence for noise controlled pattern se
replication is discussed in@6#, where the replication rate is
maximal for an optimal but small noise intensity.

We therefore consider a stochastic version of the Gr
Scott model@4#, defined by the following system of stocha
tic partial differential equations:

]

]t
V5lUV22mV1Dv¹2V1hv~x,t !,

]

]t
U5u02lUV22nU1Du¹2U1hu~x,t !. ~1!

In the absence of noise,~1! coincides with the Gray-Scot
model @4#, which is a variant of the autocatalytic Selko
model of glycolysis, corresponding to the following chem
cal reactions:

U12V→
l

3V,

V→
m

P,

U→
n

Q,

→
u0

U. ~2!
©2003 The American Physical Society14-1
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V(x,t) andU(x,t) represent the concentrations of the chem
cal speciesU and V, and are functions ofd-dimensional
spacex and timet. l is the reaction rate,P andQ are inert
products,m is the decay rate ofV andn is the decay rate o
U and u0 is the constant feed rate. In@5#, the reaction rate
parameter was simply set equal to unity:l51. Here we re-
tain it as a free parameter, as we will see that it undergo
nontrivial renormalization. A nonequilibrium constraint
represented by a feed term forU. The rate at whichU is
supplied is positive if the concentration ofU drops below an
equilibrium value and negative if it exceeds it. The equil
rium U concentration isu0 /n, where u0 is the feed rate
constant. The chemical speciesU and V can diffuse with
independent diffusion constantsDu and Dv . All the model
parameters are positive.

Any real chemical system is subjected to random fluct
tions. We can include such effects in the GS model by me
of noise terms that can, in principle, be additive or multip
cative. In this work we have chosen to investigate the in
ence of additive noise alone as a initial approach to the
stochastic problem in which both types of fluctuations can
simultaneously present. This is intended, therefore, as a
step towards incorporating fluctuation effects. This choice
influenced in part by the technical aspects of the dynam
renormalization group. From this perspective, additive no
which enters the dynamics linearly, is technically easier
treat analytically in RG calculations. Accordingly, here w
have opted to use independent additive colored noi
hv(x,t) andhu(x,t). First spatially correlated noise and the
temporally correlated noise are considered. A few caution
remarks regarding our incorporation of noise are in order.
emphasize that here we are adopting a simple phenom
logical approach, wherein noise is added to the ideali
deterministic equations. But, stochastic equations can als
derived from first principles. We refer to the methods th
take a classical master equation, purporting to encode
precise microchemistry, to a continuum field theory@7–9#.
This ‘‘second-quantized’’ formalism requires detailed know
edge of the microscopic master equation, and the end re
of this method yields the stochastic PDE~SPDE! for the
coarse-grained degrees of freedom and the~internal! noise
correlations. A technical discrepancy comes up in apply
phenomenological reaction-diffusion equations with real
ditive noise to pair-reaction kinetics~i.e., V1V→0), since
in this particular case of particle annihilation, the SPDE d
rived from the fundamental microscopic master equation
complex and contains imaginary noise@10#. However, for
standard Gribov processes~particle clustering reactions!, the
first-principles method does lead to a real SPDE with r
additive noise. Thus, thead hocmethod is adequate for han
dling these cases. For external or environmental noise,
phenomenological strategy adopted here is also adeq
since external fluctuations are typically specified only at
coarse-grained level.

The remainder of the paper is organized as follows.
Sec. II we specify the noise properties directly in Four
space and derive the scaling laws that the model param
06611
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in ~1! obey when the stochastic equations are scale invar
~as they are in the neighborhood of any RG fixed point! and
the general scaling form of the correlation functions of t
composition fields is deduced in Sec. II A. This informatio
will be needed when we apply the renormalization group
Sec. III. The fixed points and associated exponents
solved for and the RG flow is represented in a reduced t
dimensional parameter space. The global flow patte
clearly illustrate thed dependence of the flow, the role of th
associated critical dimension, as well as the phenomen
crossover. In Sec. IV we discuss the emergence of effec
three-body reaction terms not present in the original
model that arise as a direct consequence of fluctuations
nonlinearity. Modifications and changes in the RG resu
due to the presence of temporally correlated noise are v
briefly discussed in Sec. V. Conclusions and discussion
presented in Sec. VI.

II. NAIVE SCALING PROPERTIES

We can deduce the naive scaling laws that must hold if
stochastic equations~1! are to be form-invariant under a ba
sic rescaling of both space and time. To do so, we specify
properties of the noise. In Fourier space, the noise corr
tions are given by

^hv~k,v!hv~k8,v8!&

52~2p!d11Avk2yvdd~k1k8!d~v1v8!,

^hu~k,v!hu~k8,v8!&

52~2p!d11Auk2yudd~k1k8!d~v1v8!,

^hv~k,v!hu~k8,v8!&50. ~3!

We assume all cumulants vanish, except the above, thus
noises are individually Gaussian, centered around zero
mutually uncorrelated. The independent noise amplitu
Av ,Au.0 are positive definite and the noise exponentsyv
andyu are real free parameters.

Space, time, and the concentrationsU, V, are rescaled by
the following transformations:

x→s21x,

t→s2zt,

V→s2xvV,

U→s2xuU. ~4!

Here,s.1 is a convenient scale factor andz is the so-called
dynamic exponent. We initially allow for each concentrati
field to respond independently under the rescaling; this
reflected by the twoa priori independent roughness exp
nentsxv and xu , respectively. However, the fact that th
4-2
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reaction ratel appears simultaneously in both theU andV
equation requires thatxu5xv[x, as is easy to check. Ther
is just a single roughness exponent to deal with.

Subjecting the equations~1! to this transformation, we
find the model parameters scale naively~classically! in the
following way:

n→szn,

m→szm,

Dv→sz22Dv ,

Du→sz22Du ,

u0→sz2xu0 ,

Av→syv2d1z22xAv ,

Au→syu2d1z22xAu ,

l→s2x1zlu . ~5!

Correlation functions

Both the dynamic and roughness exponents govern
scaling form of the correlation functions of the concentrat
fields. To see this, consider the effect of a scale transfor
tion on theV field which we write more explicitly as

V~sx,szt !5sxV~x,t !, ~6!

which holds in the scaling regime~when the system is nea
one of its RG fixed points!. Then the correlation function
will scale as

^V~x,t !V~0,0!&5s22x^V~sx,szt !V~0,0!&5uxu2xFS t

uxuzD ,

~7!

where the scaling functionF obeys the following asymptotic
limits @11#:

lim
u→0

F~u!5const, lim
u→`

F~u!5const3u2x/z. ~8!

Thus, knowledge of both scaling exponents (z,x) is required
in order to predict the long-wavelength and long-time cor
lations of the fields. Similar considerations apply to the^UU&
and cross-correlation̂VU&. In fact, the scaling of these lat
ter two correlations will obey a relation similar to Eq.~7!,
except for a possibly different scaling function. Neverthele
the limits in Eq. ~8! are valid for all scaling functions, al
though the constants appearing there can be distinct. The
best suited for the calculation of the required exponent
provided by the renormalization group, to which we ne
turn.

III. RENORMALIZATION GROUP „RG… ANALYSIS

Since we are interested in the emergent scaling prope
of the model, we focus on the hydrodynamic limit, that
06611
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the long-timet→` and long-distancex→` limits. The dy-
namical RG@12,13# is a powerful tool for computing and
analyzing the asymptotic properties of out-of-equilibriu
stochastic systems.

In order to calculate the scaling exponents in t
asymptotic limit, the linear and nonlinear parts of the equ
tions of motion can be reorganized so as to allow a per
bative calculation in powers of the nonlinear parameterl.
After Fourier transforming, the coupled stochastic equatio
of motion ~1! can be rewritten as

V~k,v!5Gv0~k,v!hv~k,v!1Gv0~k,v!l

3E ddk1

~2p!d

dv1

2p

ddk2

~2p!d

dv2

2p
V~k1 ,v1!V~k2 ,v2!

3U~k2k12k2 ,v2v12v2!,

U~k,v!5Gu0~k,v!hu~k,v!1Gu0~k,v!

3~2p!d11dd~k!d~v!u02Gu0~k,v!l

3E ddk1

~2p!d

dv1

2p

ddk2

~2p!d

dv2

2p
V~k1 ,v1!V~k2 ,v2!

3U~k2k12k2 ,v2v12v2!, ~9!

where the bare propagators~or, response functions! Gv0 and
Gu0 are defined by

Gv0~k,v!5
1

m1Dvk22 iv
,

Gu0~k,v!5
1

n1Duk22 iv
. ~10!

The wave-number modulus is denoted byk5uku. Define the
effective propagators by

V~k,v![Gv~k,v!hv~k,v!, ~11!

U~k,v![Gu~k,v!$hu~k,v!1~2p!d11dd~k!d~v!u0%.
~12!

Substituting these into the set of integral equations~9! yields
a set of equations that can be solved iteratively to any or
in l. To this end, it is best to handle the expansion via d
grams, and the above equation~9! are represented diagram
matically as follows:
4-3
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The directed double straight~wiggly! line symbol represents
the effectiveV propagator~U propagator! defined above:
straight and wiggly lines correspond to theV sector, andU
sector, respectively. The single directed lines stand for
bare propagators~10!. It is understood that each directed lin
carries wave numberk and frequencyv, which is conserved
at all vertices, as can be seen from Eq.~9!. We do not write
down this dependence explicitly on the graphs in order
avoid clutter. The nonlinear coupling terms, or vertices,
represented by the directed four-pronged symbols, of wh
there are two, and these are denoted by the encircled nu
06611
e

o
e
h
er-

als a andb, respectively. The zero modeu0 in the second
equation in~9! is indicated above by â . The perturbation
expansion can now be performed efficiently without havi
to carry along lengthy and tedious algebraic expressions.
further details on using graphical methods to solve stocha
differential equations, see the Appendixes of@14#. The cal-
culation of the propagator then follows from a graphical
eration of these expressions, amputating one noise fa
from the legs, followed by an averaging over the remain
noise factors. The results at one-loop level are indicated
follows:
r.
is

s
hs
tions. We
Note that only theU propagator receives corrections at one loop, whereas theV propagator is unchanged to this orde
Furthermore, thev noise is what ‘‘drives’’ the renormalization of theU propagator. The loop expansion for the vertices
indicated below. One takes the vertices and iterates, to a desired order in the couplingl, by replacing directed double line
using the above equations of motion. Then, three noise factors~two hv’s and onehu) are amputated and the resultant grap
are averaged over the remaining noises. A combinatorial factor of 4 appears after counting all possible noise contrac
thus obtain
4-4
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LARGE-SCALE EMERGENT PROPERTIES OF AN . . . PHYSICAL REVIEW E68, 066114 ~2003!
The noise spectral functions receive no corrections at o
loop order. We point out that althoughl is employed as a
formal expansion parameter, the bonafide and dimension
perturbation parameterg @see Eq.~14!# is a combination of
this, a noise amplitude, a decay constant, a diffusion c
stant, and a short distance~or ultraviolet! cutoff needed for
convergence of the integrals. Moreover, we expand in lo
rather than in powers ofg. Physically, the loop expansion i
an expansion in powers of the noise amplitude@15#. We note
that at leading order in loops, the perturbation expans
indicates that only theU field propagator and the nonlinea
couplingl receive corrections. The noise amplitudes and
V propagator are unchanged at one-loop order. At two-lo
order, all propagators, the noise amplitudes, as well as
vertices, do receive corrections. However, there are so
important issues at leading order that need to be underst

The dynamical RG transformation is carried out in tw
steps@13#.

~1! High momenta components, in the momentum sh
Le2d l,uku,L, at and below the cutoffL, are integrated
out. Note:s5el .

~2! A change of scale restores the cutoff to the valueL.
Further details of the calculation are given in Appendix

A and B. Working with infinitesimal parameterd l gives rise
to differential equations governing the RG flow in parame
space,

dn

dl
5zn1

lAvKdLd2yv

~m1DvL2!
,

dm

dl
5zm,

dDv

dl
5~z22!Dv ,

dDu

dl
5~z22!Du ,

du0

dl
5~z2x!u0 ,

dAv

dl
5~yv2d1z22x!Av ,

dAu

dl
5~yu2d1z22x!Au ,

dl

dl
5F2x1z2

4lAvKdLd2yv

~m1DvL2!~m1n1DvL21DuL2!Gl.

~13!

Kd5Sd /(2p)d where Sd is the surface area of
d-dimensional sphere. As already noted in the correspond
graphs, at one-loop order, only two out of the total of eig
model parameters run with scale, namely, the decay raten, of
the U field and the nonlinear couplingl. Note, moreover,
that at this order, the corrections are driven by thev noise,
06611
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but not theu noise. Despite the relative simplicity of thes
equations, nontrivial RG fixed points and flow already res
at this leading order perturbation.

A. Fixed points and dynamic scaling

We determine the fixed points and associated expon
implied by the above equations~13!. We can analyze the RG
flow in a reduced two-dimensional parameter space by in
ducing the pair of dimensionless couplings defined by

g5lAvKd

Ld2yv22

nDv
, ~14!

h5~Dv1Du!
L2

n
, ~15!

for then the RG equations~13! can be written as

ṅ5n~z1g!, ~16!

l̇5lS 2x1z2
4g

11hD . ~17!

We do not write out the remaining trivial RG equations. No
we have takenm50 from the outset. This choice is necessa
in order to obtain a nontrivialgÞ0 fixed point solution of
Eq. ~13!. Here the overdot stands for the derivatived/dl. In
terms ofg andh, the nontrivial part of the RG flow is gov
erned by the pair of equations

ġ5gS yv2d122g2
4g

11hD , ~18!

ḣ52~21g!h. ~19!

The fixed points can be solved for by looking for all zero
of the pair ~18!, ~19!, to be denoted as (g* ,h* ) while the
associated fixed point exponents are obtained by substitu
the solutions ofġ50 and ḣ50 into ~16!, ~17!; solving for
the zeroes of this latter pair then yields the exponents,
noted by (z* ,x* ).

We first search for all nontrivial fixed points. These co
respond tog* Þ0, sinceg is proportional to the nonlinea
couplingl. There are two cases to be distinguished.

Case (a). g* 522 and 11h* 58/(d2yv24). The asso-
ciated exponents arez* 52 and x* 5(22d1yv)/2. Note
that the combination (z* 22x* 2d1yv)[0 vanishes iden-
tically. Thus, if we chooseu050, andyu5yv , all remaining
RG equations~13! are stationary. Note for this fixed poin
solution, the stochastic GS model is in the same universa
class as the linear Edwards-Wilkinson model@14#.

Case (b). h* 50 andg* 5(yv2d12)/5. The exponents
associated with this fixed point arez* 52(yv2d12)/5 and
x* 5(yv2d12)/2. Again we chooseu050, then all remain-
ing RG equations are automatically stationary except that
noise amplitudes decay to zero on approaching this fi
4-5
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point: Av( l )5Avel (z22x2d1yv)→0 asl→` and similarly for
Au( l ). This limit holds provided thatd,121yv , and d
,121yu for the limit of Au .

Since the model~1! is defined as having all non-negativ
parameters, we must exclude the solution in case~a! as being
physically spurious. This leaves us with the nontrivial fix
point of case~b!, which is an attractive fixed point and i
indicated by the symbolA in the flow graph; refer to Fig. 1

There is one trivial fixed point: this is a saddle point,
indicated byS in the flow graph Fig. 1. This corresponds
g* 50 andh* 50. The exponents are found to bez* 50 and
x* 5(yv2d)/2. This is a fixed point solution to all equation
in ~13! providedyv5yu and again upon settingu050.

B. RG flow

The RG flow in the regions of parameter space surrou
ing the fixed points is obtained by numerically integrati
the differential equations~18!, ~19! for various choices of
distinct initial conditions chosen from within the basins
attraction or repulsion of the fixed points. The results
shown in Figs. 1, 2, and 3. The topology, the direction of
flow, and the fixed point stability are controlled by the sing
parameter epsilone522d1yv . In deriving cases~a! and
~b! above, we tacitly assumed thate.0. The corresponding
flow is plotted in Fig. 1. The origin is a saddle point an
there is one asymptotically stable fixed point, as shown th
For very small initial g, the effective dynamics will flow
towardsSand then be repelled toA. Thus, the system exhib
its crossover. In the vicinity ofS, the correlations of the
concentrations therefore scale as (r 5uxu)

^V~x,t !V~0,0!&;r ~yv2d!, ~20!

whereas on approaching the pointA, they scale according to

^V~x,t !V~0,0!&;r ~yv2d12! for r→` ~21!

;t25 for t→`. ~22!

FIG. 1. A projection of the RG flow in Eqs.~18! and~19!. Two
fixed points:A is attractive,S is a saddle point. This is plotted fo
e.0.
06611
-
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e

e.

If e50, there is no fixed point at nonzerog. The origin
~0,0! changes from a saddle point to an attracting sink
e→0. The critical dimension is defined bye50, and is given
by dc521yv . This is the dimension below which fluctua
tions are relevant. For example, for white noise,dc52,
which is also the critical dimension of the Edward
Wilkinson model@14#.

For e,0, there is only the trivial fixed pointA at the
origin. Both these cases are shown in Figs. 2 and 3, res
tively. In the neighborhood of this point, the correlatio
again scale as in Eq.~20!.

IV. INDUCED THREE-BODY REACTIONS

Consider the graphical representation of the stocha
equations of motion written in Eq.~9! and which are dis-
played below Eq.~12!. In arriving at the perturbative expan
sion for the vertex representing the chemical reactionUV2 in
Eq. ~1!, the steps used in the graphical method involved
placing two of the vertex legs with the exact expression
V(k,v) and the third remaining leg with the exact expre
sion for U(k,v) using Eq.~9!. This step must be iterate

FIG. 2. A projection of the RG flow in Eqs.~18! and~19!. One
fixed point:A is attractive. This is plotted fore50.

FIG. 3. A projection of the RG flow in Eqs.~18! and~19!. One
fixed point:A is attractive. This is plotted fore,0.
4-6



hi
d

nd
ra
ec
is
iv
io

m

ois
.

ffe
, i
rs

lu
uc

ea
e
u

ed

ne

no

uc
G

d

e

ti
th

e

t

ce

ase

the

al-
d

oint

ed

ive
:

lts
ns.

s

n

and
of
ical
to

asic
we

LARGE-SCALE EMERGENT PROPERTIES OF AN . . . PHYSICAL REVIEW E68, 066114 ~2003!
once more in order to obtain all one-loop diagrams. At t
intermediate stage, however, we generate a set of tree
grams ~i.e., containing no loops! with all legs terminating
either in anhv or in an hu noise factor. Now, the effective
UV2 vertex results after amputating~i.e., removing! two
hv’s and onehu noise factor from each tree diagram a
then averaging over the remaining noise factors. The ave
ing step makes use of the noise correlation functions sp
fied in Eq.~3!. The combinatorial factor for each diagram
found by counting all possible noise contractions that g
rise to it. In this way, we arrived at the one-loop expans
for l depicted diagramatically above in Sec. III.

However, at the step leading to the set of tree diagra
one can instead amputate twohu’s and onehv noise from
the tree diagrams and then average over the remaining n
or, alternatively, amputate threehv factors and then average
The sequence of noise factor amputations can lead to di
ent allowed reaction kinetics. Thus, at the one-loop level
addition to the Gray-ScottUV2 reaction, one also encounte
the following ~induced! effective reactions involving a triple
product of chemical concentrations:

U2V or V3. ~23!

It is important to realize that these are alternative but exc
sive reactions, in that noise-factor amputation can prod
one reaction, say (U2V), or the other (V3), but not both
simultaneously. This is simply because each alternative r
tion derives from the same tree graph, the only differenc
due to the sequence of noise amputations and subseq
averaging steps. Note it is not possible to amputate threehu
factors at one loop level~this would have led to aU3 reac-
tion, which is therefore ruled out from the effective induc
dynamics at this order!. Both reactions in Eq.~23! are pro-
portional to l2 at one-loop order. Moreover, since at o
loop both concentration fieldsU andV scale with the same
exponentx, these effective three-body reactions scale ass3x

and will be relevant~or, irrelevant! if and only if the original
GS reaction is. Most importantly, the new reactions do
destroy the scale invariance of Eq.~1! at the fixed points.

Physically, this means that at one-loop order in the fl
tuations, corrections are not only induced in the original
reaction, leading to its renormalization@i.e., the last equation
in Eq. ~13!#, but that a new effective reaction is generate
This new reaction is not present in the GS model~i.e., does
not exist at tree level! but is a direct consequence of th
combined effect of noise and nonlinear terms in Eq.~1!. In
this sense, the stochastic version of the GS is not renorm
izable at long wavelengths because new relevant reac
terms are thereby induced. The large scale chemistry
emerges at the attractive fixed pointA is GS with corre-
sponding effective~renormalized! parameters plus one of th
alternative induced reactions written in~24! or in ~25!. This
is interesting because it indicates that at large scales,
coarse-grained theory~1! represents anapparentlydistinct
chemistry.

In terms of chemical reactions, the new reaction verti
would correspond to production ofV and orU molecules in
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one of the alternative pathways indicated below. In the c
of the vertexU2V, we have various pathways

V12U→H 3U
2V1U

3V,
~24!

whereas for the case of the vertexV3,

3V→H 3U
2V1U
V12U.

~25!

Thus, for the case of the inducedU2V vertex, and for the
specific pathwayV12U→2V1U, the effective one-loop
reaction dynamics at the attractive fixed point is given by
following deterministic equations:

]

]t
V5l* UV21~l* !2U2V1Dv¹2V,

]

]t
U52l* UV22~l* !2U2V2n* U1Du¹2U, ~26!

wherel* and n* denote the fixed-point values ofl and n,
respectively. Recall that only these two parameters renorm
ize nontrivially at one-loop order. Moreover, from the fixe
point analysis case~b! given in Sec. III A, we recall the
solution A is obtained form50, u050 and both the noise
amplitudes decay to zero upon approaching the fixed p
providedd,121y. For an attracting fixed point,e522d
1y.0 which requiresd,21y, which is the stronger in-
equality. Alternatively, for the case of the one-loop induc
three-body reactionV3, and for the pathway 3V→2V1U,
the effective one-loop reaction dynamics at the attract
fixed point is given by the pair of deterministic equations

]

]t
V5l* UV22~l* !2V31Dv¹2V,

]

]t
U52l* UV21~l* !2V32n* U1Du¹2U. ~27!

The effective reaction dynamics derived above resu
from the lowest order one-loop perturbative RG calculatio
If the RG program is carried out to higher order~for ex-
ample, to two-loop order!, then these one-loop induced term
would have to be taken into account.

V. TEMPORALLY CORRELATED NOISE

Starting from a microscopic description, the eliminatio
of the fast degrees of freedom leading to~1! can in principle
result in noise with long-range correlations in both space
time. It is therefore of interest to investigate the influence
temporally correlated noise on the present phenomenolog
model. It is straightforward to extend the RG analysis
incorporate long range temporal correlations. Since the b
calculational steps are similar to those employed above,
4-7
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will be concise and list only the salient features specific
temporal correlations.

So, in place of~3!, we consider Gaussian noise with co
relations that behave asymptotically as follows:

^hv~k,v!hv~k8,v8!&52~2p!d11Avk2yvv22uvdd~k1k8!

3d~v1v8!,

^hu~k,v!hu~k8,v8!&52~2p!d11Auk2yuv22uudd~k1k8!

3d~v1v8!, ~28!

where the exponentsuv , uu control the range of the tempora
correlations; the limit of purely spatial correlations is reco
ered by settinguv5uu50.

Scaling properties of the noise amplitudes are modified
follows:

Av→syv2d22x1z~112uv!Av ,

Au→syu2d22x1z~112uu!Au , ~29!

while the remainder of the relations in~5! are unchanged
The steps needed to carry out the perturbation expansion
associated diagrammatic development of~1! are the same a
before; only now, the noise factors appearing there and in
diagrams are those corresponding to Eqs.~28!. The calcula-
tion of the required loop diagrams and integrals follows
same basic steps as outlined in Appendixes A and B. Du
~28! the integration over internal loop frequencyV is much
more complicated, though still analytically tractable@16#.
The two nontrivial one-loop differential RG equations in~13!
are modified accordingly:

dn

dl
5zn1cscF ~112uv!

p

2 G lAvKdLd2yv

~m1DvL2!112uv
,

dl

dl
5S 2x1z24 cscF ~122uv!

p

2 GlAvKdLd2yv~n1DuL2!

3
~n1DuL2!2122uv2~m1DvL2!2122uv

~m1DvL2!22~n1DuL2!2 Dl, ~30!

and the allowed range of the noise exponent is2 1
2 ,uv

, 1
2 . As in the case of pure spatially correlated noise, we

analyze the RG flow and fixed points in terms of a con
nient choice of dimensionless parameters~taking m50 from
the outset!:

g5lAvKd cscF ~112uv!
p

2 G Ld2yv

n~DvL2!112uv
, ~31!

h15Dv

L2

n
,

h25Du

L2

n
. ~32!
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This should be contrasted with the pair used in Sec. III
here the temporal correlations do not allow one to comb
h1 and h2 consistently into a single unified variable (h1
1h2)→h, as we did above.

In terms of these variables, the RG equations can be w
ten as

ġ5gS yv2d12~112uv!2g24g~11h2!

3

S h1

11h2
D 112uv

21

~11h11h2!~212h21h1!
D ,

ḣ152h1~21g!,

ḣ252h2~21g!. ~33!

The fixed points are solved for by looking for all the zero
of the triplet of equations in~33!. As before, there are two
nontrivial fixed points and one trivial fixed point. One of th
nontrivial fixed points corresponds tog* 522, h1* and h2*
are arbitrary constants, and we discard it for the reas
given earlier @see comments concerning case~a! in Sec.
III A #. The other nontrivial point corresponds tog* 5@yv
2d12(112uv)#/5 and h1* 5h2* 50. The associated expo
nents are found to bez* 52@yv2d12(112uv)#/5 and
x* 5@yv2d12(112uv)#/2. Previous results pertaining t
pure spatially correlated noise are immediately recovered
setting uv50 in these expressions. The trivial fixed poi
corresponds tog* 5h1* 5h2* 50, with exponentsz* 50 and
x* 5(yv2d)/2, results which are seen to be identical
those of the purely spatially correlated case. In this case,
flow is governed by the parametere5yv2d12(112uv).
The RG flow is qualitatively the same as before, so in t
respect, temporally correlated noise leads to no new feat
at one-loop order.

VI. CONCLUSIONS AND DISCUSSION

We have studied the large wavelength and long time l
its of the Gray-Scott model subject to random fluctuatio
We carried this out for additive noise containing long ran
correlations in space and in time, which leads one to cons
a set of coupled stochastic partial differential equations. T
noise is intended to model in part the combination of coar
grained external fluctuations, environmental noise, and a
imprecise knowledge of initial and boundary conditions. T
asymptotic behavior of this system is revealed from apply
the dynamical renormalization group combined with pert
bation theory. This behavior is summarized by flows in p
rameter space, which indicate how the parameters of the
namic model change under coarse graining; general poin
this space represent the dynamics effective at the corresp
ing space and time scale. The fixed points control the eff
tive dynamics at the largest scales and corresponding co
lation functions~in terms of the chemical concentrations
4-8
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composition fields! are power laws depending on a pair
scaling exponents. It will be noted that the information o
tained here is of a statistical nature, since here one dea
correlation functions, which are themselves probabiliti
These correlations provide a measure of the long wavele
properties of the patterns that can form in the presence
fluctuations.

The RG calculation was carried out to one-loop order.
this lowest order, only two out of eight of the model para
eters receive corrections, yet there is already a nontri
infrared stable fixed point and the phenomena of crosso
We have also identified the critical dimension below whi
fluctuations are relevant. This dimension isdc521yv for
spatially correlated noise ordc521yv12(112uv), for
noise with both spatial and temporal correlations, resp
tively. In the limit of large scales~after coarse graining! the
properties of the system converge towards a simple solu
with fractal properties~i.e., exhibiting scale invariance! as
shown in Fig.~1!. The existence of this solution depends
the sign of e. The nontrivial scale invariant solution i
present only for positive values ofe, when the fluctuations
become important and then emergent behavior arises. M
over, we find that the combined interplay of the nonlinear
and the fluctuations lead to effective three-body react
terms not present in the original GS model. At one-loop
der in the fluctuations the new reaction vertices corresp
to three-body molecular reactions with various alternat
pathways as expressed in Eqs.~24! and ~25!.

The renormalized reaction-diffusion equations theref
can be represented by a chemistry apparently distinct f
the original GS reaction. For small noise amplitudes, a o
loop calculation should be adequate to capture some of
salient features of stochastic reaction-diffusion dynamics
fact, simple white noise can lead to rather striking effec
Preliminary numerical calculations demonstrate clearly t
both pattern selection and dynamic pattern replication can
controlled by adding white noise to the deterministic G
model@6#. These studies raise important questions pertain
to the role of noise in both chemical and biological se
organization and the environmental selection of emerg
properties.

At one-loop order, temporally correlated noise leads to
noteworthy features in the RG analysis, though that con
sion may change at next higher order. Temporally correla
fluctuations can lead to complex scaling exponents wh
signal the presence of hierarchical structures@17#. Such
structures are absent at one-loop order.
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APPENDIX A: PROPAGATOR RENORMALIZATION

Details of the propagator renormalization are give he
As the diagrams for the expanded propagators show, at
loop only theU propagator receives corrections. Reverti
back from diagrams to corresponding algebraic quantit
we have that

Gu~k,v!5Gu0~k,v!1l@Gu0~k,v!#2

3E
p,V

2Avp2yvGv0~p,V!Gv0~2p,2V!,

~A1!

where*p,V5*ddp/(2p)d*2`
` dV/2p is an abbreviation for

the integration over wave vector and frequency. The integ
tion over wave vector can of course be further decompo
into an integration over angles and modulus. Equation~A1!
can be used to obtain an expansion for theinversepropaga-
tor,

Gu
21~k,v!5Gu0

21~k,v!2lE
p,V

2Avp2yvGv0~p,V!

3Gv0~2p,2V!1O~l2!. ~A2!

Referring back to the structure of the bare propagator in~10!,
in order that the original model~1! be renormalizable in the
hydrodynamic limit, the inverse effective propagator mu
have the form

Gu
21~k,v!5 ñ1D̃uk22 iv, ~A3!

whereñ andD̃u are the effective, or renormalized, decay ra
and diffusion constants for theU field, respectively.

Since the one-loop correction integral in Eq.~A2! does
not depend on eitherv nor k, we can immediately conclude
that the diffusion constant is unrenormalized at one-loop
der, D̃u5Du , while the decay rate renormalization is give
by

ñ5n1lE
p,V

2Avp2yvGv0~p,V!Gv0~2p,2V!. ~A4!

The frequency integration overV can be performed exactly
~e.g., by residues!. Finally, eliminating a finite band of large
wave numbers below the cutoffL in the Wilsonian fashion
then yields

ñ,5n1lAvKdE
L/s

L

dp
pd2yv21

~m1Dvp2!
. ~A5!

For an infinitesimally thin wave-number shell (s511d, 0
,d!1) we pass from an integral to a differential relatio
After a further re-scaling according to~5! we obtain the first
differential RG equation as displayed in~13!.
4-9
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APPENDIX B: VERTEX RENORMALIZATION

Steps similar to those above are involved in the renorm
ization of the one-loop vertex~or, couplingl!. Transcribing
the vertex diagram in the text back into algebraic quantit
we have that

l̃5l24l2E
p,V

2Avp2yvGv0~p,V!Gv0~2p,2V!

3Gu0~2p,2V!, ~B1!

where we have set all external wave-numbers and frequ
cies to zero from the outset, in anticipation of the hydrod
namic limit. As before, the frequency integration can be p
ae

,

hy

06611
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formed immediately by means of residues. Eliminating
finite band of large wave-numbers yields

l̃,5l24l2AvKd

3E
L/s

L

dp
pd2yv21

~m1Dvp2!~m1n1@Du1Dv#p2!
,

~B2!

For an infinitesimally thin wave-number shell (s511d,
0,d!1! we pass from an integral to a differential relatio
After a further rescaling according to Eq.~5! we obtain the
last differential RG equation as displayed in Eq.~13!.
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