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Large-scale emergent properties of an autocatalytic reaction-diffusion model subject to noise
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The nonequilibrium dynamic fluctuations of a stochastic version of the Gray-&8ttmodel are studied
analytically in leading order in perturbation theory by means of the dynamic renormalization group. There is an
attracting stable fixed point at one-loop order, and the asymptotic scaling of the correlation functions is
predicted for both spatial and temporally correlated noise sources. New effective three-body reaction terms, not
present in the original GS model, are induced by the combined interplay of the fluctuations and nonlinearities.
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[. INTRODUCTION included is that due to Gray and Scp#]. Numerical simu-
lations of deterministic systems have revealed a surprisingly

The problem of pattern formation is a multidisciplinary large set of hitherto unknown complex and irregular patterns
challenge of great technological and scientific interest, andi]- Because of the above considerations, and in regards to
has been studied extensively in recent years by physicistéhese recent findings, three questions that immediately come
chemists, biologists, materials scientists, and othdds O mind are as follows(a) How do the fluctuations affect the
Much of the work to date has been devoted largely to generaitability of an established pattern®) What are the emer-
aspects of pattern-forming instabilities, pattern selectiongent properties, due to fluctuation effects, of such a system at
waves and fronts, and direct numerical simulation of the idelong wavelengthst) How do the deterministic and stochas-
alized deterministic equations modeling the phenomena urfic effects compete? The purpose of this paper is to formulate
der study[2]. In this approach to modeling, it is reasonable carefully an analytic answer to the second question posed in
to assume a continuum and coarse-grained description fép)- The latter will be carried out with the help of the dy-
the dynamic variablesdegrees of freedojnand the model namic renormalizatio_n g_rou(RG). The questions.raiseq in
equations are frequently, though not always, of the reaction@ and(c), of how noise influences pattern selection, will be
diffusion type. Thus, one begins by writing down some Spejnvestigated numerically and will be presented elsewhere.
Ciﬁc deterministic mode| equationS. Th|s may be regarded a§tr|k|ng numerical eVidence f0r nOise Controlled pattern Self'
the phenomenological approach to the problem. However, Eeplication is discussed if6], where the replication rate is
first principles derivation of the dynamical equations is ob-maximal for an optimal but small noise intensity.
tained by removing the fast or short wavelength degrees of We therefore consider a stochastic version of the Gray-
freedom from the microscopic description, and this procesS$cott mode(4], defined by the following system of stochas-
leads to unavoidable noise terms, representing the effects §¢ partial differential equations:
internal fluctuations, which result from this small-scale P
elimination step[3]. Additionally, in the study of complex —V=AUVZ— uV+D,V3V+ 75,(x,t),
phenomena, there is typically no precise knowledge of many Jt
of the microscopic details, nor of the initial or boundary 9
conditions needed to provide a complete description of the —U=Uyg—AUV2—pU+D,V2U + 5,(x1). (1)
problem. The dynamics may also evolve in a medilsunch at
as e}background flu)thich providgs exterrjal perturbations, |, the absence of noisél) coincides with the Gray-Scott
environmental noise, and unpredictable disturbances. Nevey; ,4q| [4], which is a variant of the autocatalytic Selkov

theless, one is interested in an explicit understandir_lg_ of the, odel of glycolysis, corresponding to the following chemi-
system at long wavelengths. For all these reasons, it is natiky) reactions:

ral to consider the influence of random noise on otherwise

deterministic models and to study stochastic reaction- A

diffusion equations. U+2v—3V,
One of the simplest models of biochemical relevance

leading to spatial and temporal patterns when diffusion is w
V—P,
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V(x,t) andU(x,t) represent the concentrations of the chemi-in (1) obey when the stochastic equations are scale invariant
cal speciesU and V, and are functions ofl-dimensional  (as they are in the neighborhood of any RG fixed poantd
spacex and timet. \ is the reaction rate® andQ are inert  the general scaling form of the correlation functions of the
products,u is the decay rate of and v is the decay rate of composition fields is deduced in Sec. Il A. T.h|s '|nformat|o'n
U andu, is the constant feed rate. [5], the reaction rate will be needed when we apply the renormalization group in

parameter was simply set equal to uniky=1. Here we re- Selc. d”:‘ Thed I';](Eng(;'lms and assoctla(;e_d exp((j)nen(tjst\;re
tain it as a free parameter, as we will see that it undergoes prved for and the oW IS represented In a reduce o-

- N T .=~ dimensional parameter space. The global flow patterns
nontrivial renormalization. A nonequilibrium constraint is .
represented by a feed term far. The rate at whichJ is clearly |IIustra_t¢ thel depen_dence of the flow, the role of the
S A o associated critical dimension, as well as the phenomena of
supplied is positive if the concentration dfdrops below an

L L ! ... crossover. In Sec. IV we discuss the emergence of effective
equilibrium value and negative if it exceeds it. The eq“"'b'three-body reaction terms not present in the original GS

fium U concentration isuo/», whereuo is the feed rate  mode| that arise as a direct consequence of fluctuations and

constant. The chemical speciesand V can diffuse with  nopjinearity. Modifications and changes in the RG results

independent diffusion constan, andD, . All the model  due to the presence of temporally correlated noise are very

parameters are positive. briefly discussed in Sec. V. Conclusions and discussion are
Any real chemical system is subjected to random fluctuapresented in Sec. VI.

tions. We can include such effects in the GS model by means
of noise terms that can, in principle, be additive or multipli-
cative. In this work we have chosen to investigate the influ-
ence of additive noise alone as a initial approach to the full We can deduce the naive scaling laws that must hold if the
stochastic problem in which both types of fluctuations can bestochastic equationd) are to be form-invariant under a ba-
simultaneously present. This is intended, therefore, as a firstic rescaling of both space and time. To do so, we specify the
step towards incorporating fluctuation effects. This choice igroperties of the noise. In Fourier space, the noise correla-
influenced in part by the technical aspects of the dynamicdions are given by

renormalization group. From this perspective, additive noise,

which enters the dynamics linearly, is technically easier to (m,(K,w) 7,(K", "))

treat analytically in RG calculations. Accordingly, here we _ , ,

have opted to use independent additive colored noises, =2(2m AR kK Swt "),
7,(X,t) andn,(x,t). First spatially correlated noise and then
temporally correlated noise are considered. A few cautionary (nu(k, @) ny(k",@"))

remarks. regarding our incorporation. of nois'e are in order. We =2(2m) 9 Ak Vusd(k+k ) S(w+w'),
emphasize that here we are adopting a simple phenomeno-

logical approach, wherein noise is added to the idealized

deterministic equations. But, stochastic equations can also be (n,(K, @) 7y(K",@"))=0. )
derived from first principles. We refer to the methods that

take a classical master equation, purporting to encode th&/e assume all cumulants vanish, except the above, thus the
precise microchemistry, to a continuum field the§r-9]. noises are individually Gaussian, centered around zero and
This “second-quantized” formalism requires detailed knowl- Mutually uncorrelated. The independent noise amplitudes
edge of the microscopic master equation, and the end resft. -Au=>0 are positive definite and the noise exponens

of this method yields the stochastic POEPDE for the andy, are real free parameters.

coarse-grained degrees of freedom and (theerna) noise Space, time, and the concentratidhsV, are rescaled by
correlations. A technical discrepancy comes up in applying® following transformations:

phenomenological reaction-diffusion equations with real ad-

II. NAIVE SCALING PROPERTIES

ditive noise to pair-reaction kinetids.e., V+V—0), since x—s1x,

in this particular case of particle annihilation, the SPDE de-

rived from the fundamental microscopic master equation is t—s i,

complex and contains imaginary noi§&0]. However, for

standard Gribov processgsarticle clustering reactiopsthe Vs Xy,

first-principles method does lead to a real SPDE with real

additive noise. Thus, thad hocmethod is adequate for han- B

dling these cases. For external or environmental noise, the U—s uU. 4

phenomenological strategy adopted here is also adequate

since external fluctuations are typically specified only at theHere,s>1 is a convenient scale factor ands the so-called

coarse-grained level. dynamic exponent. We initially allow for each concentration
The remainder of the paper is organized as follows. Infield to respond independently under the rescaling; this is

Sec. Il we specify the noise properties directly in Fourierreflected by the twa priori independent roughness expo-

space and derive the scaling laws that the model parametengnts y, and x,, respectively. However, the fact that the
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reaction ratex appears simultaneously in both theandV the long-timet—o and long-distanc&—o limits. The dy-

equation requires that,= x, = x, as is easy to check. There namical RG[12,13 is a powerful tool for computing and

is just a single roughness exponent to deal with. analyzing the asymptotic properties of out-of-equilibrium
Subjecting the equationél) to this transformation, we  ¢o-hastic systems.

find the model parameters scale naivetjassically in the In order to calculate the scaling exponents in the
following way: asymptotic limit, the linear and nonlinear parts of the equa-

v— &Py, tions of motion can be reorganized so as to allow a pertur-
bative calculation in powers of the nonlinear parameter
u— S, After Fourier transforming, the coupled stochastic equations
of motion (1) can be rewritten as
D,—s* 2D,
D,—s*"?Dy, V(K,0)=G,o(k, ) 7,(k, @)+ G,o(Kk, )\
Uo—S? XUy, j d%; dw; d%, dw,
(2’7T)d 2 (2’7T)d 20 V(klawl)v(kawZ)

—d+z-2
AUHSyU z XAU,
s XU(k—Kk;—Kky,0—w;—w,),
A, — sV YA,

A—S2XFIN 5

“ B Uk, w) = Guolk, @) 74(k,w) +Gyo(k,w)
Correlation functions X (27)9159(k) 8(w)ug— Gyo(k, @)\

Both the dynamic and roughness exponents govern the d%; dw; d%, dw,

scaling form of the correlation functions of the concentration X 2m 27 (2m)° EV(kl,wl)V(kz,wz)

fields. To see this, consider the effect of a scale transforma-

tion on theV field which we write more explicitly as XU(k—k;— Ky, 0— 01— w,), 9)
V(sx,s)=s*V(x,t), (6)

which holds in the scaling regimevhen the system is near Where the bare propagatdar, response functionss, and
one of its RG fixed points Then the correlation function CGuo @ré defined by

will scale as
t
=g 2X Z =|x|2XP| — B
(V(x,1)V(0,0)=s"*X(V(sx,s1)V(0,0)) = x| ‘D( |x|2>’ Guolk,w)="7 Dk’ —iw’
(7
where the scaling functio® obeys the following asymptotic
limits [11]: e
Guo(k,) v+Dki—iw" (10

lim ®(u)=const, lim®(u)=constx u?¥'z, (8)
u—~0 u—oo
The wave-number modulus is denotedkby|k|. Define the

Thus, knowledge of both scaling exponertsy( is required effective propagators by

in order to predict the long-wavelength and long-time corre
lations of the fields. Similar considerations apply to (b&J)
and cross-correlatiofVU). In fact, the scaling of these lat-
ter two correlations will obey a relation similar to E(),
except for a possibly different scaling function. Nevertheless,

the limits in Eq.(8) are valid for all scaling functions, al-

though the constants appearing there can be distinct. The tool U(K, ) =G(k,®){ ny(k,®)+(2m)** *8%(k) 8(w)uo}.
best suited for the calculation of the required exponents is (12
provided by the renormalization group, to which we next

turn.

V(k,0)=G,(k,0)7,(k,0), (11)

Substituting these into the set of integral equati@®syields
IIl. RENORMALIZATION GROUP  (RG) ANALYSIS a set of eq_uations_ that can be solved iteratively to any or_der
in \. To this end, it is best to handle the expansion via dia-
Since we are interested in the emergent scaling propertiggrams, and the above equati(®) are represented diagram-
of the model, we focus on the hydrodynamic limit, that is, matically as follows:
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T
=T = —e— + T
T +®
My
ARAMARA Ty + 0 = Anvmnare I, +0 + M
M +®

The directed double straigkitviggly) line symbol represents als @) and(), respectively. The zero mods, in the second

the effectiveV propagator(U propagator defined above: equation in(9) is indicated above by &. The perturbation
straight and wiggly lines correspond to thesector, andJ expansion can now be performed efficiently without having
sector, respectively. The single directed lines stand for théo carry along lengthy and tedious algebraic expressions. For
bare propagatordl0). It is understood that each directed line further details on using graphical methods to solve stochastic
carries wave numbek and frequency, which is conserved differential equations, see the Appendixes[d#]. The cal-

at all vertices, as can be seen from E9). We do not write  culation of the propagator then follows from a graphical it-
down this dependence explicitly on the graphs in order teeration of these expressions, amputating one noise factor
avoid clutter. The nonlinear coupling terms, or vertices, ardrom the legs, followed by an averaging over the remaining
represented by the directed four-pronged symbols, of whicmoise factors. The results at one-loop level are indicated as
there are two, and these are denoted by the encircled numdollows:

|
—ppm— = —— 2 loops

AAMAAE = AP + “ + 2 loops
9 .

Note that only theU propagator receives corrections at one loop, whereas/tipgopagator is unchanged to this order.
Furthermore, the noise is what “drives” the renormalization of thg propagator. The loop expansion for the vertices is
indicated below. One takes the vertices and iterates, to a desired order in the caudingeplacing directed double lines

using the above equations of motion. Then, three noise fatwosz,’s and onez,) are amputated and the resultant graphs

are averaged over the remaining noises. A combinatorial factor of 4 appears after counting all possible noise contractions. We

thus obtain

L (2)

= +4 + 2 loops

(2) (2)

= +4 + 2 loops

066114-4



LARGE-SCALE EMERGENT PROPERTIES OF AN . .. PHYSICAL REVIEW@B, 066114 (2003

The noise spectral functions receive no corrections at onedut not theu noise. Despite the relative simplicity of these
loop order. We point out that althoughis employed as a equations, nontrivial RG fixed points and flow already result
formal expansion parameter, the bonafide and dimensionlesd this leading order perturbation.

perturbation parametey [see Eq.(14)] is a combination of

this, a noise amplitL_Jde, a decay constant, a diffusion con- A. Fixed points and dynamic scaling

stant, and a short distancer ultravioley cutoff needed for ) . . )

convergence of the integrals. Moreover, we expand in loops We determine the fixed 'pomts and associated exponents
rather than in powers daj. Physically, the loop expansion is implied by the above equatiori$3). We can analyze the RG

an expansion in powers of the noise amplit(itig]. We note rovv_ ina reduc_:ed tvv_o-d|m§n3|onal para_meter space by intro-
that at leading order in loops, the perturbation expansioflucing the pair of dimensionless couplings defined by

indicates that only th&J field propagator and the nonlinear Ad-Y,—2
coupling\ receive corrections. The noise amplitudes and the g=MAA Kg——=, (14)
V propagator are unchanged at one-loop order. At two-loop vD,
order, all propagators, the noise amplitudes, as well as the
vertices, do receive corrections. However, there are some A?
important issues at leading order that need to be understood. h=(D,+D.) o (15
The dynamical RG transformation is carried out in two
steps[13]. , for then the RG equationd.3) can be written as
(1) High momenta components, in the momentum shell
Ae 9<|k|]<A, at and below the cutoff\, are integrated v=v(z+9) (16)
out. Note:s=e'. ’
(2) A change of scale restores the cutoff to the value 4
Further details of the calculation are given in Appendixes A=\|2x+z— 9 _ (17)
A and B. Working with infinitesimal parameteit gives rise 1+h
to differential equations governing the RG flow in parameter
space, We do not write out the remaining trivial RG equations. Note
g we have takenu=0 from the outset. This choice is necessary
%—z N AA KA T Yo in order to obtain a nontriviafj# 0 fixed point solution of
dr — <" (u+D,A?) "’ Eqg. (13). Here the overdot stands for the derivatiVl. In
terms ofg andh, the nontrivial part of the RG flow is gov-
du erned by the pair of equations
7 = Zm,
dl
. 49
9=9|Y,—d+2-9- 71/, (18)
-=(z-2)D,,
dl v
dD, h=—(2+g)h. (19
=(z=2)Dy,
dl The fixed points can be solved for by looking for all zeroes

of the pair(18), (19), to be denoted asg{,h*) while the
associated fixed point exponents are obtained by substituting
the solutions ofy=0 andh=0 into (16), (17); solving for
the zeroes of this latter pair then yields the exponents, de-
noted by €*,x*).

We first search for all nontrivial fixed points. These cor-
respond tog* # 0, sinceg is proportional to the nonlinear

dug
W—(Z_X)Uo,

dA,
WZ(yv—dﬂLZ—ZX)AU ,

dA, —(v—dtz-2v)A coupling\. There are two cases to be distinguished.
dl =Wy 2= 2X)Au, Case (a)g*=—2 and +h*=8/(d—y,—4). The asso-
ciated exponents arg*=2 and y*=(2—d+vy,)/2. Note
di ANAKGA SV that the combinationz* —2x* —d+y,)=0 vanishes iden-
ar | 2xtzo (L DA%t v D,AZT DAY A tically. Thus, if we choose,=0, andy,=Yy,, all remaining

(13) RG equationg13) are stationary. Note for this fixed point
solution, the stochastic GS model is in the same universality

Kq=Sy/(27)% where Sy is the surface area of a class as the linear Edwards-Wilkinson mofted].
d-dimensional sphere. As already noted in the corresponding Case (b) h* =0 andg* =(y,—d+2)/5. The exponents
graphs, at one-loop order, only two out of the total of eightassociated with this fixed point azé = —(y,—d+2)/5 and
model parameters run with scale, namely, the decayuaie  y* =(y,—d+2)/2. Again we choosay=0, then all remain-
the U field and the nonlinear coupliny. Note, moreover, ing RG equations are automatically stationary except that the
that at this order, the corrections are driven by thaoise, noise amplitudes decay to zero on approaching this fixed
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FIG. 1. A projection of the RG flow in Eq$18) and(19). Two FIG. 2. A projection of the RG flow in Eq$18) and(19). One
fixed points:A is attractive,Sis a saddle point. This is plotted for fixed point: A is attractive. This is plotted fo¢=0.
e>0.

If e=0, there is no fixed point at nonzem The origin
point: A, (1)=A, e'#2x~d%%.) .0 as| - and similarly for ~ (0,0) changes from a saddle point to an attracting sink as
A,(1). This limit holds provided thad<12+y,, andd €—0. The critical dimension is defined k=0, and is given
<12+y, for the limit of A,,. by d.=2+y,. This is the dimension below which fluctua-

Since the mode(l) is defined as having all non-negative tions are relevant. For example, for white noisk=2,
parameters, we must exclude the solution in ¢asas being which is also the critical dimension of the Edwards-
physically spurious. This leaves us with the nontrivial fixed Wilkinson model[14].
point of case(b), which is an attractive fixed point and is  For <0, there is only the trivial fixed poinA at the
indicated by the symboA in the flow graph; refer to Fig. 1. origin. Both these cases are shown in Figs. 2 and 3, respec-

There is one trivial fixed point: this is a saddle point, astively. In the neighborhood of this point, the correlations
indicated bySin the flow graph Fig. 1. This corresponds to again scale as in Eq20).

g* =0 andh* =0. The exponents are found to b&=0 and
x*=(y,—d)/2. This is a fixed point solution to all equations IV. INDUCED THREE-BODY REACTIONS
in (13) providedy, =y, and again upon settingy=0.

Consider the graphical representation of the stochastic
equations of motion written in Eq9) and which are dis-
played below Eq(12). In arriving at the perturbative expan-

The RG flow in the regions of parameter space surroundsion for the vertex representing the chemical readtif in
ing the fixed points is obtained by numerically integrating Eq. (1), the steps used in the graphical method involved re-
the differential equation$18), (19) for various choices of placing two of the vertex legs with the exact expression for
distinct initial conditions chosen from within the basins of V(k,w) and the third remaining leg with the exact expres-
attraction or repulsion of the fixed points. The results aresion for U(k,w) using Eq.(9). This step must be iterated
shown in Figs. 1, 2, and 3. The topology, the direction of the
flow, and the fixed point stability are controlled by the single s
parameter epsilok=2—-d+vy,. In deriving casega) and
(b) above, we tacitly assumed that-0. The corresponding
flow is plotted in Fig. 1. The origin is a saddle point and
there is one asymptotically stable fixed point, as shown there
For very small initialg, the effective dynamics will flow osr
towardsS and then be repelled #. Thus, the system exhib-
its crossover. In the vicinity ofS, the correlations of the 7 4,
concentrations therefore scale as=(x|)

B. RG flow

0.4

(V(x,t)V(0,0))~r¥o~®, (20) o1 r
whereas on approaching the poftthey scale according to o
d+2 1;) 0.235 Oj1 0.‘15 0f2 0.25
(V(X,1)V(0,0))~r¥e=d+2)  for r o0 (22) h
FIG. 3. A projection of the RG flow in Eq$18) and(19). One
~t7° for t—oo. (22 fixed point: A is attractive. This is plotted foe<O0.
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once more in order to obtain all one-loop diagrams. At thisone of the alternative pathways indicated below. In the case
intermediate stage, however, we generate a set of tree diaf the vertexU?V, we have various pathways
grams (i.e., containing no loopswith all legs terminating

either in anz, or in an n, noise factor. Now, the effective 3u
UV? vertex results after amputating.e., removing two V+2U—4 2V+U (24
7,’S and onen, noise factor from each tree diagram and 3V,

then averaging over the remaining noise factors. The averag-
ing step makes use of the noise correlation functions speciwhereas for the case of the verte,
fied in Eq.(3). The combinatorial factor for each diagram is

found by counting all possible noise contractions that give 3U
rise to it. In this way, we arrived at the one-loop expansion 3V—4 2V+U (25
for \ depicted diagramatically above in Sec. Ill. V+2U.
However, at the step leading to the set of tree diagrams,
one can instead amputate twg’'s and onez, noise from Thus, for the case of the inducétfV vertex, and for the

the tree diagrams and then average over the remaining noisegecific pathwayv+2U—2V+U, the effective one-loop
or, alternatively, amputate threg factors and then average. reaction dynamics at the attractive fixed point is given by the
The sequence of noise factor amputations can lead to diffefollowing deterministic equations:

ent allowed reaction kinetics. Thus, at the one-loop level, in

addition tQ thg Gray—ScotﬂV? reaction, one also_encounters iV:)\* UV2+ (A\*)2U2V+ D, V2V,

the following (induced effective reactions involving a triple at v

product of chemical concentrations:

iu:—x*uvz—()\*)zuzv— v*U+D,V2U, (26
U2V or Vo (23 Jt
where\* and v* denote the fixed-point values af and »,

It is important to realize that these are alternative but exclurespectively. Recall that only these two parameters renormal-
sive reactions, in that noise-factor amputation can produci&e nontrivially at one-loop order. Moreover, from the fixed
one reaction, sayU?V), or the other ¥3), but not both  point analysis caséb) given in Sec. lllA, we recall the
simultaneously. This is simply because each alternative reasolution A is obtained foru=0, ug=0 and both the noise
tion derives from the same tree graph, the only difference immplitudes decay to zero upon approaching the fixed point
due to the sequence of noise amputations and subsequgrbvidedd<12+y. For an attracting fixed point=2—d
averaging steps. Note it is not possible to amputate thyee +y>0 which requiresd<2+vy, which is the stronger in-
factors at one loop levethis would have led to &2 reac-  equality. Alternatively, for the case of the one-loop induced
tion, which is therefore ruled out from the effective inducedthree-body reactioiv®, and for the pathway \8—2V+U,
dynamics at this ord@r Both reactions in Eq(23) are pro- the effective one-loop reaction dynamics at the attractive
portional to\? at one-loop order. Moreover, since at one fixed point is given by the pair of deterministic equations:
loop both concentration fieldd andV scale with the same
exponenty, these effective three-body reactions scale®s
and will be relevantor, irrelevant if and only if the original
GS reaction is. Most importantly, the new reactions do not
destroy the scale invariance of E@) at the fixed points. d 2 3 5

Physically, this means that at one-loop order in the fluc- U= T AMUVER (V)P0 U+ D VAU (2D)
tuations, corrections are not only induced in the original GS
reaction, leading to its renormalizatipie., the last equation  The effective reaction dynamics derived above results
in Eqg. (13)], but that a new effective reaction is generated.from the lowest order one-loop perturbative RG calculations.
This new reaction is not present in the GS mo@el., does  |f the RG program is carried out to higher ordéor ex-

not exist at tree levglbut is a direct consequence of the ample, to two-loop orderthen these one-loop induced terms
combined effect of noise and nonlinear terms in BEg. In  \would have to be taken into account.

this sense, the stochastic version of the GS is not renormal-
izable at long wavelengths because new relevant reaction
terms are thereby induced. The large scale chemistry that
emerges at the attractive fixed poiAtis GS with corre- Starting from a microscopic description, the elimination
sponding effectivérenormalizedl parameters plus one of the of the fast degrees of freedom leading(1d can in principle
alternative induced reactions written (B4) or in (25). This  result in noise with long-range correlations in both space and
is interesting because it indicates that at large scales, thi@me. It is therefore of interest to investigate the influence of
coarse-grained theorgl) represents ampparentlydistinct  temporally correlated noise on the present phenomenological
chemistry. model. It is straightforward to extend the RG analysis to
In terms of chemical reactions, the new reaction verticesncorporate long range temporal correlations. Since the basic
would correspond to production & and orU molecules in  calculational steps are similar to those employed above, we

3
ﬁv:x*uvz—(x*)zv% D,V2V,

V. TEMPORALLY CORRELATED NOISE
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will be concise and list only the salient features specific toThis should be contrasted with the pair used in Sec. Il A:

temporal correlations. here the temporal correlations do not allow one to combine
So, in place of(3), we consider Gaussian noise with cor- h; and h, consistently into a single unified variabléa,(
relations that behave asymptotically as follows: +h,)—h, as we did above.

In terms of these variables, the RG equations can be writ-
(7, (K,w) 7, (K" 0" )y =2(2m) 4T IA Kk Yo 2% 59(k+ k") ten as

XS(w+w'),
(nu(K, @) py(k' 0"))=2(2m) " T AK Yuw ™ 2%us%(Kk+k') g=g| y,—d+2(1+26,)—g—4g(1+h,)
Xéw+tw'), (28 h, \1+20
1 v
-1
where the exponenty, , 6, control the range of the temporal 1+h,
correlations; the limit of purely spatial correlations is recov- X (1+h;+hy)(—=1—hy+hy)/’
ered by settingd, = 6,=0.
Scal.lng properties of the noise amplitudes are modified as hy=—hy(2+9),
follows:
A, — Y02 a1 20, hy=—hy(2+9). (33)
Au_}syu_d_zxﬂ(ﬂzgu)Au, 29 The fixed points are solved for by looking for all the zeroes

of the triplet of equations iri33). As before, there are two
nontrivial fixed points and one trivial fixed point. One of the
pgntrivial fixed points corresponds " = -2, hi andh3

are arbitrary constants, and we discard it for the reasons

while the remainder of the relations i®) are unchanged.
The steps needed to carry out the perturbation expansion a
associated diagrammatic developmentDfare the same as ©. ) : )
before; only now, the noise factors appearing there and in th iven earlier [see com_m_ents concerning cag® in Sec.
diagrams are those corresponding to EgS). The calcula- IA]. The other nontnvlal pS'”t corresponds. o =[y,

tion of the required loop diagrams and integrals follows the ™ d+2(1+26,)1/5 and h*1 =h3=0. The associated expo-
same basic steps as outlined in Appendixes A and B. Due tBents are found to be*=—[y,—d+2(1+26,)]/5 and

(28) the integration over internal loop frequenfyis much ~ X* =[Y,—d+2(1+26,)]/2. Previous results pertaining to
more complicated, though still analytically tractajl&s]. pure spatially .correlated noise are |mmed|a.te.ly rgcovereq by
The two nontrivial one-loop differential RG equationd ir8) setting 6,=0 in these expressions. The trivial fixed point

are modified accordingly: corresponds t@* =h} =h% =0, with exponentg* =0 and
x*=(y,—d)/2, results which are seen to be identical to
dv | NAKGAT Y those of the purely spatially correlated case. In this case, the
oot CS{ (1+26,) 5 (4t D ADT 0, flow is governed by the parametery,—d+2(1+26,).

The RG flow is qualitatively the same as before, so in this
- respect, temporally correlated noise leads to no new features
2x+z—4 cs%(l— 26,) E}xAdeAdyv( y+D,A2)  atone-loop order.

dA
qr=

(V+ DUAZ)—l—ZHU_ (M_,r_ DUAZ)—l—ZBU VI. CONCLUSIONS AND DISCUSSION

(u+D,A%2=(r+D,A?)?

) N, (30

We have studied the large wavelength and long time lim-
its of the Gray-Scott model subject to random fluctuations.
and the allowed range of the noise exponent-ig<6,  We carried this out for additive noise containing long range
<3. Asin the case of pure spatially correlated noise, we caorrelations in space and in time, which leads one to consider
analyze the RG flow and fixed points in terms of a conve- set of coupled stochastic partial differential equations. The
nient choice of dimensionless parametéieking u=0 from  noise is intended to model in part the combination of coarse-
the outset grained external fluctuations, environmental noise, and also

Ay imprecise_ kgor}vledge (f)fri]nitial and k_)oundar)l/ ((:jofnditions.IT_he
™ v asymptotic behavior of this system is revealed from applyin
9=MAKq cs{(1+200)5} v(D,A%)1+20 (D) thg d)F/)namicaI renormalizatign group combined with Fp))zr){uf
bation theory. This behavior is summarized by flows in pa-
A2 rameter space, which indicate how the parameters of the dy-
h,=D,—, namic model change under coarse graining; general points in
v this space represent the dynamics effective at the correspond-
ing space and time scale. The fixed points control the effec-
h.=D A_ 32) tive dynamics at the largest scales and corresponding corre-
2 lation functions(in terms of the chemical concentrations or
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composition fields are power laws depending on a pair of ~ APPENDIX A: PROPAGATOR RENORMALIZATION

sgalmg equnents. I vv-|||.be noted thqt the information Ob'. Details of the propagator renormalization are give here.
tained here is of a statistical nature, since here one deals i

. . . ©alS Ws the diagrams for the expanded propagators show, at one
correlation functions, which are themselves probab|I|t|es1oop only theU propagator receives corrections. Reverting

These correlations provide a measure of the long wavelengifly ok from diagrams to corresponding algebraic quantities,
properties of the patterns that can form in the presence Qe have that

fluctuations.

_The RG calculation was carried_out to one-loop order. At Gy(k,®)=Gyg(K, @)+ \[Gyo(K, ®)]?
this lowest order, only two out of eight of the model param-
eters receive corrections, yet there is already a nontrivial _
infrared stable fixed point and the phenomena of crossover. X J’p’QZAvp YGyo(P,2)Gyo(—p. — 1),
We have also identified the critical dimension below which
fluctuations are relevant. This dimensionds=2+Yy, for
spatially correlated noise od.=2+y,+2(1+26,), for q d e . o
noise with both spatial and temporal correlations, respechere [ o=/dp/(2m)"[~..dQ/2m is an abbreviation for
tively. In the limit of large scalegafter coarse graininghe  the integration over wave vector and frequency. The integra-
properties of the system converge towards a simple solutioROn over wave vector can of course be further decomposed
with fractal properties(i.e., exhibiting scale invariangeas  into an integration over angles and modulus. Equatidh)
shown in Fig.(1). The existence of this solution depends oncan be used to obtain an expansion for itheersepropaga-
the sign of e. The nontrivial scale invariant solution is tOr,
present only for positive values @& when the fluctuations
become important and then emergent behavior arises. More-
over, we find that the combined interplay of the nonlinearity
and the fluctuations lead to effective three-body reaction
terms not present in the original GS model. At one-loop or- XGUO(—p,—Q)+O()\2). (A2)
der in the fluctuations the new reaction vertices correspond
to three-bOdy molecular reactions with various alternativmeferring back to the structure of the bare propagat@lm
pathways as expressed in E¢g4) and (25). in order that the original modélL) be renormalizable in the

The renormalized reaction-diffusion equations thereforenydrodynamic limit, the inverse effective propagator must
can be represented by a chemistry apparently distinct fromaye the form

the original GS reaction. For small noise amplitudes, a one-

loop calculation should be adequate to capture some of the

salient features of stochastic reaction-diffusion dynamics. In

fact, simple white noise can lead to rather striking effects. 5

Preliminary numerical calculations demonstrate clearly thatvhere? andD , are the effective, or renormalized, decay rate

both pattern selection and dynamic pattern replication can band diffusion constants for thd field, respectively.

controlled by adding white noise to the deterministic GS Since the one-loop correction integral in E¢\2) does

model[6]. These studies raise important questions pertainingot depend on eithap nor k, we can immediately conclude

to the role of noise in both chemical and biological self-that the diffusion constant is unrenormalized at one-loop or-

organization and the environmental selection of emergenger, D, =D, , while the decay rate renormalization is given

properties. by

At one-loop order, temporally correlated noise leads to no

noteworthy features in the RG analysis, though that conclu-

sion may change at next higher order. Temporally correlated V= y+)\J' 2A,p Y0 G,o(p, Q)G o(—p,— Q). (A4)

fluctuations can lead to complex scaling exponents which p.Q

signal the presence of hierarchical structufég]. Such

structures are absent at one-loop order. The frequency integration ovéd can be performed exactly
(e.g., by residugsFinally, eliminating a finite band of large
wave numbers below the cutoff in the Wilsonian fashion

ACKNOWLEDGMENTS then yields

(A1)
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APPENDIX B: VERTEX RENORMALIZATION formed immediately by means of residues. Eliminating a

Steps similar to those above are involved in the renormalljlnlte band of large wave-numbers yields

ization of the one-loop vertetor, coupling\). Transcribing i ,
the vertex diagram in the text back into algebraic quantities, A~ =A—4N“A Ky
we have that A pd—yv—l
X d ;
JA/S P(u+D,p)(u+v+[Dy+D,1p)

(B2)

7\2)\—47\2J QZAUP_V”Guo(D.Q)Gvo(— p,— 1)
P,

XGyo(—p,— ), (B1) o :
For an infinitesimally thin wave-number shels=1+ 6,

where we have set all external wave-numbers and frequed<5<1) we pass from an integral to a differential relation.
cies to zero from the outset, in anticipation of the hydrody-After a further rescaling according to E() we obtain the
namic limit. As before, the frequency integration can be perdast differential RG equation as displayed in E&3).
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