13,402 research outputs found
A 100 pc Elliptical and Twisted Ring of Cold and Dense Molecular Clouds Revealed by Herschel Around the Galactic Center
Thermal images of cold dust in the Central Molecular Zone of the Milky Way, obtained with the far-infrared cameras on board the Herschel satellite, reveal a ~3 × 10^7 M_☉ ring of dense and cold clouds orbiting the Galactic center. Using a simple toy model, an elliptical shape having semi-major axes of 100 and 60 pc is deduced. The major axis of this 100 pc ring is inclined by about 40° with respect to the plane of the sky and is oriented perpendicular to the major axes of the Galactic Bar. The 100 pc ring appears to trace the system of stable x_2 orbits predicted for the barred Galactic potential. Sgr A⋆ is displaced with respect to the geometrical center of symmetry of the ring. The ring is twisted and its morphology suggests a flattening ratio of 2 for the Galactic potential, which is in good agreement with the bulge flattening ratio derived from the 2MASS data
Plasma and cavitation dynamics during pulsed laser microsurgery in vivo
We compare the plasma and cavitation dynamics underlying pulsed laser
microsurgery in water and in fruit fly embryos (in vivo) - specifically for
nanosecond pulses at 355 and 532 nm. We find two key differences. First, the
plasma-formation thresholds are lower in vivo - especially at 355 nm - due to
the presence of endogenous chromophores that serve as additional sources for
plasma seed electrons. Second, the biological matrix constrains the growth of
laser-induced cavitation bubbles. Both effects reduce the disrupted region in
vivo when compared to extrapolations from measurements in water.Comment: 9 pages, 5 figure
Herschel/HIFI discovery of interstellar chloronium (H_2Cl^+)
We report the first detection of chloronium, H_2Cl^+, in the interstellar medium, using the HIFI instrument aboard the Herschel Space Observatory.
The 2_(12)−1_(01) lines of ortho-H^(35)_2 Cl^+ and ortho-H^(37)_2 Cl^+ are detected in absorption towards NGC 6334I, and the 1_(11)−0_(00) transition of para-H^(35)_2 Cl^+ is
detected in absorption towards NGC 6334I and Sgr B2(S). The H_2Cl^+ column densities are compared to those of the chemically-related species
HCl. The derived HCl/H_2Cl^+ column density ratios, ~1–10, are within the range predicted by models of diffuse and dense photon dominated
regions (PDRs). However, the observed H_2Cl^+ column densities, in excess of 10^(13) cm^(−2), are significantly higher than the model predictions. Our
observations demonstrate the outstanding spectroscopic capabilities of HIFI for detecting new interstellar molecules and providing key constraints
for astrochemical models
The methanol lines and hot core of OMC2-FIR4, an intermediate-mass protostar, with Herschel/HIFI
In contrast with numerous studies on the physical and chemical structure of low- and high-mass protostars, much less is known about their intermediate-mass counterparts, a class of objects that could help to elucidate the mechanisms of star formation on both ends of the mass range. We present the first results from a rich HIFI spectral dataset on an intermediate-mass protostar, OMC2-FIR4, obtained in the CHESS (Chemical HErschel Survey of Star forming regions) key programme. The more than 100 methanol lines detected between 554 and 961 GHz cover a range in upper level energy of 40 to 540 K. Our physical interpretation focusses on the hot core, but likely the cold envelope and shocked regions also play a role in reality, because an analysis of the line profiles suggests the presence of multiple emission components. An upper limit of 10^(-6) is placed on the methanol abundance in the hot core, using a population diagram, large-scale source model and other considerations. This value is consistent with abundances previously seen in low-mass hot cores. Furthermore, the highest energy lines at the highest frequencies display asymmetric profiles, which may arise from infall around the hot core
Orbital assembly and maintenance study
The requirements, conceptual design, tradeoffs, procedures, and techniques for orbital assembly of the support structure of the microwave power transmission system and the radio astronomy telescope are described. Thermal and stress analyses, packaging, alignment, and subsystems requirements are included along with manned vs. automated and transportation tradeoffs. Technical and operational concepts for the manned and automated maintenance of satellites were investigated and further developed results are presented
Reversal of infall in SgrB2(M) revealed by Herschel/HIFI observations of HCN lines at THz frequencies
Aims. To investigate the accretion and feedback processes in massive star formation, we analyze the shapes of emission lines from hot molecular cores, whose asymmetries trace infall and expansion motions.
Methods. The high-mass star forming region SgrB2(M) was observed with Herschel/HIFI (HEXOS key project) in various lines of HCN and its isotopologues, complemented by APEX data. The observations are compared to spherically symmetric, centrally heated models with density power-law gradient and different velocity fields (infall or infall+expansion), using the radiative transfer code RATRAN.
Results. The HCN line profiles are asymmetric, with the emission peak shifting from blue to red with increasing J and decreasing line opacity (HCN to H^(13)CN). This is most evident in the HCN 12–11 line at 1062 GHz. These line shapes are reproduced by a model whose velocity field changes from infall in the outer part to expansion in the inner part.
Conclusions. The qualitative reproduction of the HCN lines suggests that infall dominates in the colder, outer regions, but expansion dominates in the warmer, inner regions. We are thus witnessing the onset of feedback in massive star formation, starting to reverse the infall and finally disrupting the whole molecular cloud. To obtain our result, the THz lines uniquely covered by HIFI were critically important
Effectiveness of the ADEC as a level 2 screening test for young children with suspected autism spectrum disorders in a clinical setting
Background The Autism Detection in Early Childhood (ADEC) is a clinician-administered, Level 2 screening tool. A retrospective file audit was used to investigate its clinical effectiveness.
Method Toddlers referred to an Australian child development service between 2008 and 2010 (N?=?53, M age?=?32.2 months) were screened with the ADEC. Their medical records were reviewed in 2013 when their mean age was 74.5 months, and the original ADEC screening results were compared with later diagnostic outcomes.
Results The ADEC had good sensitivity (87.5%) and moderate specificity (62%). Three behaviours predicted autism spectrum disorders (ASDs): response to name, gaze switching, and gaze monitoring (p???.001).
Conclusions The ADEC shows promise as a screening tool that can discriminate between young children with ASDs and those who have specific communication disorders or developmental delays that persist into middle childhood but who do not meet the criteria for ASDs
Suppressing the Rayleigh-Taylor instability with a rotating magnetic field
The Rayleigh-Taylor instability of a magnetic fluid superimposed on a
non-magnetic liquid of lower density may be suppressed with the help of a
spatially homogeneous magnetic field rotating in the plane of the undisturbed
interface. Starting from the complete set of Navier-Stokes equations for both
liquids a Floquet analysis is performed which consistently takes into account
the viscosities of the fluids. Using experimentally relevant values of the
parameters we suggest to use this stabilization mechanism to provide controlled
initial conditions for an experimental investigation of the Rayleigh-Taylor
instability
Mid-Infrared Diagnostics of LINERs
We report results from the first mid-infrared spectroscopic study of a
comprehensive sample of 33 LINERs, observed with the Spitzer Space Telescope.
We compare the properties of two different LINER populations: infrared-faint
LINERs, with LINER emission arising mostly in compact nuclear regions, and
infrared-luminous LINERs, which often show spatially extended (non-AGN) LINER
emission. We show that these two populations can be easily distinguished by
their mid-infrared spectra in three different ways: (i) their mid-IR spectral
energy distributions (SEDs), (ii) the emission features of polycyclic aromatic
hydrocarbons (PAHs), and (iii) various combinations of IR fine-structure line
ratios. IR-luminous LINERs show mid-IR SEDs typical of starburst galaxies,
while the mid-IR SEDs of IR-faint LINERs are much bluer. PAH flux ratios are
significantly different in the two groups. Fine structure emission lines from
highly excited gas, such as [O IV], are detected in both populations,
suggesting the presence of an additional AGN also in a large fraction of
IR-bright LINERs, which contributes little to the combined mid-IR light. The
two LINER groups occupy different regions of mid-infrared emission-line
excitation diagrams. The positions of the various LINER types in our diagnostic
diagrams provide important clues regarding the power source of each LINER type.
Most of these mid-infrared diagnostics can be applied at low spectral
resolution, making AGN- and starburst-excited LINERs distinguishable also at
high redshifts.Comment: 11 pages, including 2 eps figures, accepted for publication in ApJ
- …
