23,584 research outputs found

    Computer modeling of a two-junction, monolithic cascade solar cell

    Get PDF
    The theory and design criteria for monolithic, two-junction cascade solar cells are described. The departure from the conventional solar cell analytical method and the reasons for using the integral form of the continuity equations are briefly discussed. The results of design optimization are presented. The energy conversion efficiency that is predicted for the optimized structure is greater than 30% at 300 K, AMO and one sun. The analytical method predicts device performance characteristics as a function of temperature. The range is restricted to 300 to 600 K. While the analysis is capable of determining most of the physical processes occurring in each of the individual layers, only the more significant device performance characteristics are presented

    Aerodynamic and directional acoustic performance of a scoop inlet

    Get PDF
    Aerodynamic and directional acoustic performances of a scoop inlet were studied. The scoop inlet is designed with a portion of the lower cowling extended forward to direct upward any noise that is propagating out the front of the engine toward the ground. The tests were conducted in an anechoic wind tunnel facility at free stream velocities of 0, 18, 41, and 61 m/sec and angles of attack from -10 deg to 120 deg. Inlet throat Mach number was varied from 0.30 to 0.75. Aerodynamically, at a free stream velocity of 41 m/sec, the design throat Mach number (0.63), and an angle of attack of 50 deg, the scoop inlet total pressure recovery was 0.989 and the total pressure distortion was 0.15. The angles of attack where flow separation occurred with the scoop inlet were higher than those for a conventional symmetric inlet. Acoustically, the scoop inlet provided a maximum noise reduction of 12 to 15 db below the inlet over the entire range of throat Mach number and angle of attack at a free-stream velocity of 41 m/sec

    AlGaAs-GaAs cascade solar cell

    Get PDF
    Computer modeling studies are reported for a monolithic, two junction, cascade solar cell using the AlGaAs GaAs materials combination. An optimum design was obtained through a serial optimization procedure by which conversion efficiency is maximized for operation at 300 K, AM 0, and unity solar concentration. Under these conditions the upper limit on efficiency was shown to be in excess of 29 percent, provided surface recombination velocity did not exceed 10,000 cm/sec

    A summary of V/STOL inlet analysis methods

    Get PDF
    For abstract see A82-1690

    Shock induced boundary layer over a semi-infinite flat plate. Part 1: Flow in the immediate vicinity of the shock wave

    Get PDF
    Laminar, two dimensional boundary layer generated in immediate vicinity of plane shock wave moving over flat plate into gas initially at res

    Acoustic Signatures of a Model Fan in the NASA-Lewis Anechoic Wind Tunnel

    Get PDF
    One-third octave band and narrowband spectra and continuous directivity patterns radiated from an inlet are presented over ranges of fan operating conditions, tunnel velocity, and angle of attack. Tunnel flow markedly reduced the unsteadiness and level of the blade passage tone, revealed the cutoff design feature of the blade passage tone, and exposed a lobular directivity pattern for the second harmonic tone. The full effects of tunnel flow are shown to be complete above a tunnel velocity of 20 meters/second. The acoustic signatures are also shown to be strongly affected by fan rotational speed, fan blade loading, and inlet angle of attack

    Comparison of the noise characteristics of two low pressure ratio fans with a high throat Mach number inlet

    Get PDF
    Acoustics data obtained in experiments with two low pressure ratio 50.8 cm (20 in.) diameter model fans differing in design tip speed were compared. Determination of the average throat Mach number used to compare high Mach inlet noise reduction characteristics was based on a correlation of inlet wall static pressure measurements with a flow field calculation. The largest noise reductions were generally obtained with the higher tip speed fan. At a throat Mach number of 0.79, the difference in noise reduction was about 3.5 db with static test conditions. Although the noise reduction increased for the lower tip speed fan with a simulated flight velocity of 41 m/sec (80 knots), it was still about 2 db less than that of the high tip speed fan which was only tested at the static condition. However, variations in acoustic performance could not be absolutely attributed to the different fan designs because of differences in inlet lip contours which resulted in small variations of peak wall Mach number and axial extend of supersonic and near-sonic flow

    Simulated flight effects on noise characteristics of a fan inlet with high throat Mach number

    Get PDF
    An anechoic wind tunnel experiment was conducted to determine the effects of simulated flight on the noise characteristics of a high throat Mach number fan inlet. Comparisons were made with the performance of a conventional low throat Mach number inlet with the same 50.8 cm fan noise source. Simulated forward velocity of 41 m/sec reduced perceived noise levels for both inlets, the largest effect being more than 3 db for the high throat Mach number inlet. The high throat Mach number inlet was as much as 7.5 db quieter than the low throat Mach number inlet with tunnel airflow and about 6 db quieter without tunnel airflow. Effects of inlet flow angles up to 30 deg were seemingly irregular and difficult to characterize because of the complex flow fields and generally small noise variations. Some modifications of tones and directivity at blade passage harmonics resulting from inlet flow angle variation were noted
    corecore