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ABSTRACT

The problem considered in this report is the laminar,
two-dimensional boundary layer generated in the immediate
vicinity of a plane shock wave moving over a flat plate into
a gas initially at rest. Results are obtained for both a
perfect gas and a real gas in thermodynamic equilibrium
(nitrogen). The aﬁalytical method employed in the present
study is the method of weighted residuals or MWR. It is
shown that the MWR first approximation agrees within six
percent With the results for skin friction coefficient given
by Mirels and modified by Lam and Crocco for a perfect gas;
an MWR second approximation is also computed and shows agree-
ment within one percent or better. Real gas solutions are
calculated for an MWR second approximation and compared .with
the perfect gas results. The primary utility of the present
work is its application to the shock induced flow over a
seni-infinite flat plate where the leading-edge is taken into
account. This extension, assumihg boundary-layer approxima-

tions, is given in a companion report.
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skin friction coefficient,ju %E o} U2
v y=0 e e

Specific heat at comstant pressure, Btu/lbm °F
Weighting function defined by equations (3.18) and (5.20)
Gravitational constant, 32.174 ft/sec2

Dimensional static enthalpy, Btu/lbm

Joule mechanical eguivalent of heat, 778.16 f£t~1lbf/Btu
Therﬁal conductivity, Btu/ft hr °F

Characteristic length

Static pressure outside boundary layex; also a dummy
variable defined in (3.12)

Prandtl number uCp/K

pummy variable in eguation (3.15)

Gas constant for Nitrogen gas, 55.15 ft-1bf/lb-mole °R
Reynolds number defined by peUeL/ue

Tiﬁe

Yelocity parallel to flat plate

Transverse velocity

The ratioc of velocities across a statiocnary normal shock
Longitudinal independent variable

Transverse independent variable

Boundary-layer thickness, eguaticns (5.26c) and (D.11)
Displacement thickness, eguations (5.264). and (D.12)

Momentum thickness, eguationg (5.26e) and (D.13a)
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Energy dissipation thickness, equations (5.26f) and (D.13b)
Nondimensional transverse coordinate, vU_/VL vy
Dynamic viscosity
Kinematic viscosity
Nondimensional transport variable, pu/peue
Density
Dummy variable used in (5.19
Nondimensicnal longitudinal variable, x/L
Nondimensional time wvariable, Uet/L
Inverse of the gradient of the nondimensional velocity
given by (3u*/an) ~+

Subscripts and Superscripts
Variable evaluated outside the boundary layer

Indexing subscript as in hg, h etc.

ll
Characteristic length of flat plate v

Used with respect to n such that Ny = JUe72xv p/pw dy

W

O Sy

Nodal index

Value of a variable evaluated at the wall
Denotes variable nondimensionalized with respect to its
value at the outer edge of the boundary layer in plate
fixed coordinates

Variable nondimensionalized with respect to its value
at the outer edge of the boundary layer in shock wave
fixed coordinates

Dimensional variable in shock wave fixed coordinates



1. INTRODUCTION

The problem to be considered in this report is the
viscous flow in the immediate vicinity of'a plane shock wave
moving over a flat surface intc a gas initially at rest. The
flow will be assumed to satisfy the laminar boundary-layer
equations with zero pressure gradient. While such assumptions
are not well satisfied on the walls of shock tubes, they are
reésonably good approximations for the shock induced flow on
a shock tube splitter plate. Soclutions for this problem have
been reported by a number of investigators, including Mirels
{11, Ackroyd [2,3], and as a part of the analysis of Lam and
Crocco [4]. Thus, the results for a perfect gas to be reported
here will not be new. Rather, the purpose of the present work
is to first, present a new method of analysis for such flows
and make comparisons with the sarlier work, and second, to
develeop the basis for the extension of the new method to
include the leading edge effects of the splitter plate and
thus analyze the complete semi-~infinite splitter plate problem
(the complete analysis is given in a companion report).

The flow under congideration is shown in Figure L.

Figure la represents the unsteady flow as seen by an observer

fixed relative to the wall. By assuming that there is no
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Figure 1: The Boundary Layer Behind a Moving Shock Wave.



attenuation of the shock wave, the problem may be considered

as gquasi-steady by considering the flow relative to the shock
wave,. see Figure lb. Solutions in either reference frame

must, of course, be equivalent, however the quasi-steady approach
is simpler to analyze because time does not enter explicitly

as an independent variable and the previoﬁs work on this pro-
blem has taken advantage of this factor. The analysis to be
reported here will consider, to some extent, both reference
frames. However, the majority of the analysis will beifor

the unsteady flow case because the ultimate goal of the present
~analysis will be its extension to include the plate leading
edge; a problem for which the flow is truly unsteady both
relative to the plate and the shock wave.

The present analysis will consider solutions for both a
perfect gas and a real gas in thermodynamic equilibrium.
Although the flow to be analyzed is considered to model con-
ditions in a shock tube, the variation of thermodynamic vari-
ables such as density and enthalpy are assumed to be monotonic
in accordance with the earlier work which will be used as a
basis of comparison for the present results. Thus, even
though real gas solutions will be developed, a restricted
range of shock wave velocities is inherently assumed.

The analytical method employed in the present work is the
method of weighted residuals or MWR. It will be shown that an
MWR first approximaticon is in excellent agreement with the

results of Mirels [l] who employed an integral technique and



the results of Lam and Croceco [4] who used a numerical finite
difference method. Results for an MWR second approximation
will-also be given for both a perfect and a real gas

(nitrogen).



2. MATHEMATICAL FORMULATION

The flow under consideration is a laminar two-dimensional
“boundary layer generated by a plane shock wave moving over a
flat plate and is shown in Figure 1. Relative to the plate,
the shock wave is located at a point xs(t), where xs(t) = Ust
and Us is the velocity of the shock, measured with respect to
the leading edge of the plate which is assumed far upstream
and out of consideration of the present analysis (a companion
report will ponsider the effect of the plate leading edge).
Time is alsc measured relative to the shock wave arrival at the
leading edge, but this too is not relevant to the present
analysis. The following assumptions are made:

(i) The shock wave is plane, attached to the plate, and
does not attenuate with time.

(ii) The conditions outside the boundary layer behind
the moving shock wave are adeguately related to the conditions
ahead of the shock by the Rankine-~Hugoniot relation for a
normal shock.

(iii) The boundary layer is laminar, at constant pressure,
and is adequately described by the classical two-dimensional
unsteady boundary-layer equations for a compressible flow.

(iv) The fluid is considered to be either a perfect gas
with constant Prandtl number, or a real gas in thermodynamic

equilibrium.



Under the above assumptions, the following governing

equations are obtained for flow relative to the plate:

gontinuity
| a0 3pu epv _
5t T 3x T3y o 0 (2.1)
Momentum
-a-.}}-."- u._.}i.f vﬂ:>§. ug—g
O3 T PuEY T PYSY T gy | Mey (2.2)
3P
3 0 (2.3a)
apP
T 2 0 (Flat plate case) (2.3b)
Energy 5
5h %n o ooh 3 [y an), _w [2w
pyx t oouzy * pvay = ay( By By )+.gCJ(3y) (2.4)
The thermodynamic and transport property relations are
assumed in the form:
p = p(h) ]
u = ul(h) (2.5)
Pr = Pr(h)

The boundary conditions for velocity and enthalpy distribu-

tions are:

ulx > x,y,t) = ¢ (2.6a)
vix > xs,y,t) = 0 (2.6b)
u({x,0,t) =0 {(2.6c)
vix,0,t) = O (2.64)

u({x,y ~ <,t} -» Ue (2.6e)



u(xs,y > 0,t) = Ue {(2.6£f)
hix > xs,y,t) = hW (2.69)
h({x,0,t) = hw (2.6h)
hix,y » «<,t) ~» h, (2.61)
hix ,y > 0,t) = h, (2.63)

where u is the longitudinal velocity parallel to, and v is
the transverse velocity perpendicular to, the plate, respec-

tively. It will alsc be assumed that the wall temperature

remains constant during the flow. Thus

hw = gonstant (2.6k)

This last assumption can be justified by the large thermal
capacity of the splitter plate and the short duration of
shock tube flows.

It is convenient to normalize the dependent variables
in equations (2.1) to (2.6) with respect to their values in
the freestream, and to define nondimensional independent

variables as follows:

% = 2
u= = U, (2.7a)
.. L
ve =v v U_ (2.7b)
. _ h
h¥ = b, (2.7¢)
o = & (2.74)
e
p% = % (2.7e)



¢ = pFud (2.7€)
x
& =1 (2.79)
]
_ e
n o= T ¥y (2.7h)
e
Ut
. e
o=y C(2.74)

where L is an arbitrary reference length. Under the above

transformation, the governing equations become:

Continuity
391’: ap*un Bphv:': - .
5t ¢ B¢ t A =0 (2.8)
Momentun
A
.u® . g Aud " s Au® 3 au¥ )
M & IR i R A :
79T R an(“ on | (2.9)
Energy u 2 2
“h ¥ < ' ShN e & us
s':.gh‘ P4y e en Ny = g._. 3:_.'_ Poation il + y u (’ )
(] 37T + p*u t opBEVEs 5n|PT 3 gche n
(2.10)
Property equations
p" = p"‘(h ) (2.11&)
u¥ = i {ht) (2.11b)

Pr = Pr(h¥%) (2.11c)



Boundary Conditions

u (g > E_,mn,1) =0 (2.12a)
v¥(E > E_,n,T) =0 (2.12b)
u*(g,0,1) =0 (2.12¢)
v*(£,0,T) = 0 (2.124)
u*(g,nre, 1) + 1 (2.12e)
u* (g ,n>0,7) =1 (2.12€)
h*(£>E_,n,T) = h /h_ (2.129)
h*(£,0,7) = h /h (2.12h)
h*(g,n+e,T) + 1 (2.12i)
h* (g ,m>0,7) = 1 (2.123)

Equations (2.8), (2.9), and (2.10) are partial differ-
ential equations in the three independent variables &,n,
and 1. It is well known (see, for example, Mirels [1]) that
these three equations may be reduced to a system of two
coupled ordinary differential equations by following two
steps: first, by transforming to shock-fixed coordinates
which eliminates 1, and then employing a similarity trans-
formation that combines § and n into a single variable.
Additionally, there is a transformation first proposed by
Stewartson and employed in detail by Lam and Crocco [4] and
Hall [5,6,7] which combines the three plate~fixed variables
into two similarity variables. While these similarity
transformations do have an advantage for analysis of the
present problem of flow behind a shock wave, they prove to
be of more academic rather than analytical interest in the

general case where the leading edge is considered. Thus,
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in the present report, the full equations (2.8), (2.9), and
(2.10) will be analyzed in the next section by the method of
weighted residuals (MWR). It will be shown in a later section
that the resulting MWR first approximation leads to an ana-
lytical solution which provides considerable insight into the
problem in general, as well as setting tﬁe stage for the
treatment of the more general, and interesting, ieading edge
problem. It will be shoﬁn in the present work however, that
higher MWR approximations than the first can best be obtained
numerically by reverting to the shock-fixed coordinates,
although when the leading edge effect is included in the
companion report, this analytical advantage is lost and the
present formulation as given above is again employed for all

orders of MWR approximation.



3. "ANALYSIS BY THE METHOD OF WEIGHTED RESIDUALS

An analysis will now be developed to reduce the governing
" equations and boundary conditions (2.8) to (2.12) in three
independent variables to a system of equations in two inde-
pendent variables. This reduction will be achieved by
employing the method of weighted residuals or MWR, a technique
that has been used in the past for a variety of boundary-
layer proﬁlems (see [8,9,10,11,12,13]). The general theory
underlying the MWR has been extensively reviewed and discussed
in Refeiences 8 and 9 and will not be repeated here, however
the analytical details of the method as applied to the present
problem will now be carefully outlined.

The various steps of the method may be described as
follows. First, equation (2.8) is multiplied by fi(u*} and
(2.9) by dfi(u*)/du* where fi(u*), the "weighting function",
is a function of u*, temporarily assumed arbitrary; the

resulting two equations are added, vielding

L(p*fi(u*)} + E—-(p*u*fi(uﬁ)) + é—-—{p*v*fi(uf-'i?})

(3.1)

11



Second, equation (2.10) is multiplied by fi(u*) and equation

(3.1) by h*; the two resulting equations are added together

to yield
3 \ ! 3 .8u*§
%}'(D*h*fi(u*)) + é_g(szhfcfi(ux)) = hs:fi(u‘.)ﬁ&\p..w}
2 2
U .
3 [u* an% e T
+ £, (u®*)e—iz— + Folu®*)pud| o=
1 3niPr on gthe i L on } (3.2)

Third, the resulting equations (3.1) and (3.2) are integrated
with respect to n from 0 to «, and the variable of integra-~
tion is changed from n to u* yielding the following integro-

differential equations:

1 1
I £, (u*)p*edu® + 27;[ F.(u®)pEouidu® =
9T i 8 i
0 0
1
t 1"
el (ury 2 - of, 2 aux
1 p&e i p«.e
w=0 0 (3.3)
1 5 1
3 I 1y 5 ® Ak P s & Haank E
-5-_-[-[ fi(a Yh¥p®gdu® + 3T fi(u Jh#p®gu®*du
0 0
LA 3h% ¢ 1 o enen D }
(fl(u 5uF Fr m‘} (fi“‘ P
u‘.’.: u"':‘.O
"(u*) !
1 . - 1
CI) Bh"' 1 . 2 4:" N ¢ 3 X
- ——— O - H "_‘_ . k14 ...._:'..-... u:n
J( (¢ + Pr) 5eF Ta¥Fe du h l(u ) 7y ¢
0 0
2
u rl
e & .
> _ £, (u%) d
il g £p(u®) du (3.4)
c” ey

-1
*
where o = (Bu ] (3.5)

12
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Recognizing that the function 6(&,u*,t) defined by equation
(3.5) is proportional to the inverse of the shear stress,

and that 6 now replaces u* in the governing equations as a
dependent variable, the appropriate boundary conditions may

be written as:

S(Es,u*,T) = 0 (3.6a)
h*(gs,u*>0,r) = ] (3.6b)

In general itkis not possible to obtain analytic solu-
tions to eguations (3.3) and (3.4). However, by suitably
approximating the dependent variables € and h* (as well as
p*(h¥*)), selectiné appropriate variations of the physical
properties ¢ and Pr, and employing the weighting function
fi(u*) to assure that certain mathematical reguirements are
satisfied, approximate solutions may be formulated to provide
(theoretically) any desired accuracy. The selection of the
approximating and weighting functions is not completely
arbitrary but must be guided by both physical and matheﬁatical
requireménts. These reguirements will now be examined in

some detail.

3.1 Approximating and Weighting Functions

It is not possible a priori to formulate the exact
functional expressions for p*, h* and 6. However these
functions may be approximated by suitable expressions which
preserve known physical characteristics across the boundary

layer. The formulation of these approximating functions will
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be discussed in Section 3.1.1. Replacement of the exact
expressions for p*, 6, and h* in equations (3.3) and (3.4)

by the corresponding functional approximation completes the
reduction to a problem in two independent variables, & and T.
The sense in which the integro-differential equations remain
exact upon substitution of the approximaéing function is
revealed through the proper interpretation of the weighting
function fi(u*); the fi(u*) must be chosen first with the
view that the error developed by replacing exact functional
relations by approximate expressions and weighted by the
functionsifi(u*)'is zero over the range of the integration.
In general, therefore, the role of fi(u*), i=1, 2,...N, is
to preserve the sense in which the integro-differential
equations are exact even when p*, 0, and h* are replaced by
approximating functions. In the analytical sense, it is
clear that the fi(u*) are orthogonal to the error in the
interval O<u*<l, Error equations of the type defined above
will, in. subsequent sections, be called the residual equa-
tions. The derivation of the weighting function is discussed
in Section 3.1.2.

The orthogonality requirement above imposes an additional
constraint on all the free parameters which go into defining
the approximating functions. By using weighting functions
fi(u*), i=11, 2,...N, it is possible to obtain N simultaneous
partial differential equations which determine N free parameters
used in the approximating function. Thus in addition to satis-

fying the known physical characteristic of p*, & and h*, it is
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possible to use an arbitrary number of free parameters to
ensure their accurate determination.

- The technique described above is the classical method
of weighted residuals. 1Its similarity to the K&rman-Pohl-
hausen integral method is clear, where it will be recalled
‘that the approximation function for the %elocity profile is
obtained from the no slip condition at the wall, and com-

patibility at the outer edge of the boundary layer.

3.1.1 Approximating Functions

The first prerequisites in the selection of approximating
functions are that the proper physical characteristics of
the functions must be assured by the assumed mathematical
formulation, and that the resulting integrals must be bounded
and should be such that they can be either evaluated analyt-
ically or to sufficient accuracy by numerical computation.

Advantage may be taken of the occurrence of functional
groups in equations (3.3) and (3.4) as a clue in formuléting
the appfoximation functions. Because the group p*6 always
appears together, it is convenient to write a single approxi-
mation for this product. But before doing this, it is
instructive to observe that, physically, p*0 represents the
product of the nondimensional density ratio p* and the
inverse of the nondimensional velocity gradient 6§ = (Bu*/an)-l.
The conditions to be satisfied by the approximating function
for the product of p* and 6 can be rationalized by considering

their individual gqualitative behavior.
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In Sketch la is shown the velocity distribution asso-
ciated with a zero pressure gradient flow of a fluid over a
staﬁionary flat plate. Thé velocity grows uniformly from
zero at the wall to the velocity at the edge of the boundary

layer. Thus in general, the velocity distribution satisfies

the following conditions

u*(£,0,t) = 0 (3.7a)
u*(g,n>8,1) = 1 (3.7b)
2% gn28,m) = 0 (3.7¢)

where § is the local boundary-layer thickness. From the
trends in Sketch la, the qualitative form of the velocity

gradient and its inverse in shown in Sketch 1b.

0 u* 1

Sketch 1la Sketch 1lb



The foregoing discussion suggests that the approximating
function chosen for the inverse of the velocity gradient

must preserve the following characteristics.

8(¢,0,1)
8(g,1,T1)

finite (3.8a)

© (3.8b)

The representation of 6 with a polynomial is compli-
cated by the fact that 6 tends to infinity as u* tends to
one. Thus, a singularity of 6 of at least the first order
exists at u* = 1. It is necessary to characterize this
sihgularitj by as high an order as possible if compatibility
conditions at the edge of the boundary layer are to be
enforced. However, it is not particularly helpful to impose
compatibility conditions since the outer edge of the boundary
layer is usually taken as satisfactorily fixed at a point
where the boundary-layer velocity approaches to within 99
percent of the freestream velocity. Therefore assuming 8 has
a first order singularity at u* = 1, the function may be

represented by

1 NGl i
0 = 9% iio a; (£, 1) u* (3.9)

where N = 1, 2,... is associated with the order of approxi-
mation of the unknown variable.
The nondimensional density ratio p* varies between unity

at the outer edge of the boundary layer and a value of pw/pe

at the wall. The value of pw/pe in general depends on the

17
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prescribed wall conditions. 1In shock tube applications,

pw/pe may vary from unity for an acoustic wave to a number
greater than one for moderate intensity shock waves. Variations
of p* within the boundary layer depend on a combination of
frictional heating and the wall value. For the present case

of moderate intensity shock waves, it will be assumed that

an adequate approximation for p*6 may be written as:

1 Not i
P*6 = Toow .{0 b, (E,T) u* (3.10)
1=

consistant with equation (3.9).

The variation of the nondimensional density and enthalpy
ratios p*, h*, and the thermodynamic and transport property
ratios ¢ = pu/peue and g = (pu/Pr)/(peue/ng can be repre-
sented by a dummy variable P(£,u*,t) which has the following

characteristics:

where
A
([ p/pg
PU/P Mg
Pz { ) (3.12)
h/he
(pu/Pr) /(p 1 /Pr,) y
A suitable approximation for P is assumed to be
N-1 i
P(g,u*,1) = ] ¢ (E,1) u* (3.13)

i=0
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It is convenient to formulate a separate approximating
function for the inverse of p*0 whenever this occurs on the
right hand side of the integro-differential equations (3.3)
and (3.4). However, it is helpful to note that in the integro-
differential equation, the inverse of p*6 occurs only as
‘¢/p*9 or (¢/Pr)/p*6. In general therefore, whenever the
inverse of p*@ occurs as the group Q/p*6, the following

approximation is used

Q Y oa i
s = (L-u*) ) d (g, wr (3.14)
i=0

where the dummy variable, Q, is given by

{¢

Q= J ¢/Px ‘ (3.15)
%\q) + ¢/Pr
This form has been used by Pavlovskii [13] in the study of
steady compressible flow over a blunt body with spherical
leading edge and cylindrical trailing edge.
Specification of the various approximating functions is
now achieved. It remains to complete the analysis by

selecting the weighting functions.

3.1.2 Weighting Functions

It has been noted that the weighting functions fi(u*),
i=1,2,...N, preserve the sense in which equations (3.3) and
(3.4) are exact mathematical expressions. In Section 3.1, it
was deduced that the fi(u*) are orthogonal to the residual
equations in the interval O<u*<l. 1In addition to this ortho-

gonality condition, it is necessary in equations (3.3) and
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(3.4), that the fi(u*) be linearly independent; that is, it
should be impossible to find a real set of nonzero Xi such
that -
121 A Es(u¥) =0 (3.16)
Where M is any integer such that M>1. It is thus possible,
subject to equation (3.16), to obtain systems of simultaneous
independent equations from equations (3.3) and (3.4) by using
any convenient number of functions from the set fi(u*). At
this point the choice of functional expressions for fi(u*) is
still arbiﬁfary; the additional constraints which will be
enforced in making a selection of a set of functions are
determined from the following requirements:

(i) fi(u*) should be a uniformly varying set of

functions at least twice differentiable,

(ii) fi(u*) should be such that the integrands in (3.3)
and (3.4) can be evaluated without excessive labor,
and

(iii) fi(u*) should approach 0 as u* - 1 so that the first
integral in (3.3) or (3.4) is bounded. This require-
ment occurs because p*0 tends to infinity as u*
approaches unity.

Thus a satisfactory choice of fi(u*) must satisfy the

inequality

Lim {£, (u*)p*0} < (3.17)
u*>1 *
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The inequality in equation (3.17) can be satisfied in a
general way if the singularity associated with p*® in equa-
tion (3.11) is eliminated in the product of fi(u*) and p*6.

If fi(u*) is chosen as follows:

£, (u¥) = (1~u*)* ; i =1,2,...,N (3.18)

then fi(u*) satisfies all the required conditions. With
increasing values of the exponent i, it is possible to
accommodate higher order singularities of p*0 as u* approaches
unity. These fi(u*) given by equation (3.18) are monotonically
decreasinggfunctions of u*. Bquations (3.3) and (3.4) can now
be integrated once the dependent variables p*6 and h*, and the
weighting functions are replaced by the approximating and
weighting functions derived in this section. It may be noted
that because the coefficients ai, bi' Civ and di are functions
of £ and T only, the result of integrating equations (3.3)

and (3.4) is a system of simultaneous partial differential
equations involving these coefficients as the unknowns. 1In

this study, the coefficients ar bi' c, and di are not derived

i
solely from boundary conditions, they are also related to

values of the dependent variables at points interior to the
domain of interest, (0<u*<l). The derivation of expressions

for these coefficients is described in Appendix A.

3.2 The Approximate System of Equations

Substitution of the approximating functions into the
integro~differential equations yields N-1 partial differ-

ential equations obtained by using N functions in succession
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from fi(u*) in the reduced momentum equation, and N-1 functions

in succession from fi(u*) in the reduced energy equation. In
particular, if the approximating function coefficients are

chosen such that

o%g | = p,6.(¢,1) (3.19a)

fuft=i/N
¥ | = h,(£,1) (3.19b)
ly#e=3 /0
Q [ = Q;(&,1) (3.19¢)
u*=i/N .
for i =0, 1, 2 . N-1

then the resulting system of equations in 2N-1 unknowns are

' N-1 , b,
. \ <
(piei} E: aii(pjej) * 5.8, (3.20)
3=0 S 13
3 3
i=0, 1, 2, . . . N-1
N-1 N-1 N-1
¥
h, = E;‘c.. B o+ E; d..h. + ... (3.21)
i Lo, TS Ly Tiis ij
1= 1= j:()

i=1, 2, . . . N-1
in which N=1,2,3,..., and the dots over piei and hi indicate
differentiation with respect to 1, while the primes over
piei and hi represent differentiation with respect to £,
The coefficients a,., bi.,c.., di‘ and eij are numbers or

1] J 1] J

certain functions of piei' hi and the transport properties

¢i and (¢/Pr)i. The boundary conditions associated with

equations (3.20) and (3.21) are:

p 85 (E (1) = 0 (3.22a)
hi (E_(1) = 1 (3.22b)
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The system (3.20) and (3.21) will be referred to in what
follows as the approximating system in the N-th approximation.
The system is closed and compatible in the sense that the
approximating sysﬁem has been derived from a well-posed
problem. The coefficient h0 in equation (3.21) is assumed
known from the boundary condition at the ﬁall in the form

hw = constant.
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4, SOLUTION FOR N=1: FIRST APPROXIMATION

There are 2N-1 unknown parameters in the approximate
system of equations (3.20) and (3.21), where N represents
the order of the approximation. Since there are 2N-1 inde-
pendent partial differential equations, N from (3.20) and
N-1 from (3.21), solutions can be obtained for the functions
piai and hi‘ In this section, an analytic solution will be
obtained for the first approximation, N=1, and the result
compared with the results of Mirels [l] and Lam and Crocco
[4] for a perfect gas. In the next section, the second
approximation will be obtained for both a perfect gas and a
real gas.

The first approximation is obtained from equations (3.20)

and (3.21) by setting N=1l. The resulting equations are:

(b 6)°= - % (p o) + 0 (4.1)
oo 2 o o poeo
h = constant (4.2)
The boundary condition is
Ue
at- £ = ES(T), T= g byt poeo = 0 (4.3)

s

~Equations (4.1) and (4.2) are coupled in a trivial sense.
Because the coefficient hQ is a constant from equation (4.2),
the transport property %6 is also constant. For this simple

condition, it is possible to derive the following general
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solution for equation (4.1):

T
f*figu—
V 2al+a2

Applying the boundary condition (4.3) yields:

DOGO(E,T) = (alt+a26) (4.4)

¢
- / 0
0090(59T> -

U
—_— 2 - a} (4.5)
ﬂV/ (223 -ﬂ Ce

Note that it is not necessary to specify an initial condition

on 1 to obtain a sdlution for this problem. This is simply
a result of the physical fact that time t and distance § are
trivially related by the stretched coordinate U T/U, -
appearing naturally in equation (4.5), another way of saying
that in éhock-fixed coordinates, the problem is steady.

From equation (3.13), the resulting enthalpy distribution
becomes

h*(g,u*,1) = h  + (l-h,) u*(&,n,1) (4.6)

and the coefficient hO is h0 = hw/he'
The local skin friction coefficient is defined as

-4
]
C =--——_—_—__X;:_0_

£ 2
peUe

In the terminoclogy of this report, the expression becomes:

=

£ < 5B (4.7)

(o]
(o]
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where Rex = Uex/ve. Equation (4.7) is an exact relation
that holds for all orders of approximation. Substituting
the analytic solution for the first approximation given by

equation (4.5) yields the result:

NN
k2 == -1}@0
Ce\/Rex T i (4.8)
uf_i L 3
(T E

As a part of their analysis, Lam and Crocco [4] solved
for the boundary-layer flow behind a moving plane shock wave
assuming a perfect gas (they also considered the leading-edge
problem). On the basis of their results, Lam and Crocco
suggested a modification of an expression derived by Mirels
[1] for the skin~friction coefficient. Mirels'expression, as

modified by Lam and Crocco can be written in the form:

= (4.9)

Egquations (4.8) and (4.9) are compared in Figure 2 for a
perfect gas (¢O = 1). The agreement between these two results
is within six percent over the total range shown.

The enthalpy profile given by equation (4.6) is compared
with Mirels' [1] results in Figure 3. In this figure, Mirels'

similarity variable N is defined as
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f U ‘ g
n, = ,/ £ f £ dy (4.10)
J 2X\)w 5 w
where
X = Ust - x (4.11)
and
Ue = Us - Ue {4,12)

Mirels' variable n  is related to h* through u* by equation

(4.6), and u* is related to y by the definition of 6:

U L u¥
% j—%— = f 6 du* (4.13)
e
o]

(note that p* = 1l/h* for a perfect gas across a boundary
layer). The parameter w is the velocity ratio across a

stationary shock wave, given by

WeE e = 2 (4.14)
e

The figure shows that the MWR first approximation is remark-
ably accurate for such a low order approximation. It would
thus be anticipated that a second approximation would give
very adeguate engineering accuracy; this expectation is

verified in the next section.
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5. SOLUTION FOR N=2: SECOND APPROXIMATION

In the last section, a solution for p*8 for a first MWR
approximation was obtained which contained one free parameter
pgeo, while the enthalpy function h* contained no free param-
eters, depending only on the wall condition and conditions at
the outer edge of the boundary layer. Specifically, the first

approximation took the form:

p_B
N=l: p*8 = 723 (5.1a)
h* = h_ + (1-h ) u* (5.1b)

where h° = hw/he’ a constant. The utility of this approxi-
mation, aside from the remarkably good accuracy obtained for

a one-parameter approximation, is the fact that an analytical
solution Qas possible and questions concerning a numerical
treatmen£ of parﬁial differential equations did not enter the
analysis. In the present section, the second MWR approximation
will be derived in plate-fixed coordinates. The resultant set
of reduced equations is the form that must be solved for a
truly unsteady problem, and this is the form treated in the
companion report where the plate leading edge is considered.
However, for the present case of the boundary layer behind a
plane shock wave, the corresponding shock~fixed coordinates

will be reverted to and the resulting second approximation



results compared with Mirels' [1l] enthalpy distributions for
a perfect gas. This analytical approach allows the attendant
numerical difficulties of solving partial differential equa-
tions in two independent variables to be delayed until the
basic MWR technique is well established.

For a second approximation, the inteéro—differential
equations (3.20) and (3.21) will contain two free parameters
for the p*8~function and one free parameter for the h*-

function. The appropriate approximations are given by:

- . ~ l -
N=2: p*8 = PTE [{(1-2u*) poeo + u*plel] (5.2a)
h* = a, + alu* + azu*2 (5.2b)
where
a, = ho = hw/he (5.3a)
a; = -3h_  + 4hl -1 (5.3b)
a, = 2ho - 4hl + 2 (5.3¢c)

The detailed derivation of equations (5.3) is given in
Appendix A. Introducing the approximation (5.2a) into

equation (3.20) for N=2 yields the two equations, in matrix

form _ -
ool T-13 16 | . k %o
P 8y i- / / ; }(poeo) ! 8 -8 | 5%

= i { +‘ } O 0

- { ] § ! d)l

(p.8,) 1/3 -2/3 | l(c 8,) t2 0 S 2
11 L | it | P18

(5.4)
Also, substituting equation (5.2) into equation (3.21) with

N=2 yields the equation

32
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0 M1
0
. 4 {4
e .{ﬁ, [

LI e ¢t 5“) $47 ”r}
eadl % (PL, 2 2 AT, e BT
11 6 9086 2 plel 3 72 9161

2
Ve 1 9% y o /an
el I PR B A DA o o (5.5)
Bolbe 12 Po¥¢ ASUR VAR USRSY

The appropriate boundary conditions become:
piei (ES,T) = 0 for i=0,1 {(5.6a)
hy (Eg,1) =1 (5.6b)
The dots again represent differentiation with respect to .1
and the primes differentiation with respect to £.
In the reduced momentum equation, (5.4), it will be seen
that in addition to introducing the free parameter plel, a
new term ¢l has appeared in the system of equations. Recall

that ¢i has been defined as

¢i = ¢ (5.7)
u*=i /N

where i=0, 1 and N=2 in the scheme of the second approximation.
In the energy equation (5.5), hl is a dependent variable
occurring in addition to the h0 term. Similar to equation
(5.7) the functional group (d)/Pr)i appearing in the energy

equation is defined by
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(?f} = (‘ﬁ—f (5.8)
1

where i=0, 1 and N=2. In general ¢, and (¢/Pr)i are functions

}u*=i/N

of the enthalpy field within the boundary layer, thus it is
clear that equations (5.4) and (5.5) are coupled through
these terms. Remember that in the system of equations under
the first approximation, equations (4.1) and (4.2), a coupling
exists between the momentum and the energy equations in a
trivial sense énly. Because hO is a constant, it follows
that ¢O is constant for all orders of approximation.

The dependence of ¢l on £ and T is not known a priori
for the general case of a real gas; its variation will
depend on the appropriate thermodynamic relations and will
depend implicitly on the solution for h*. However, if a
perfect gas is assumed and ¢l is a constant (but not necessarily
equal to ¢O or unity), equations (5.4) and (5.5) are uncoupled

and equation (5.4) has an analytic solution given by

U T
S
Ue

It is seen that the argument of equation (5.9) is the same
"elapsed~-time" or "quasi-steady" variable that was found for
the first approximation. The coefficients Ai are constants
that may be found by iteration from equation (5.4).

When the thermodynamic variable ¢l is allowed to vary
continuously as it does for a real gas, equations (5.4) and
(5.5) are coupled and equation (5.9) is no longer a solution.

Thus, numerical techniques for solving partial differential



35

eguations must be employed to obtain solutions. In a com-
panion report, finite difference numerical techniques are
employed to solve these eqﬁations which allow not only for
real gas property variations but also truly unsteady effects.
However, for the present work finite difference methods will
be avoided by converting the governing equations to shock-
fixed coordinates, a step which automatically reduces the
problem to a éingle independent variable. The resulting
equations will then be solved by standard numerical techniques

for ordinary differential equations.

5.1 Shock~Fixed Formulation

The dependent and independent variables in the shock-

fixed and plate~fixed coordinate systems are related as

follows
X = Ust—x (5.10a)
y=y (5.10b)
u = U_-u (5.10¢)
= v (5.104)

in which the diacritical sign [i.e.(”)] represents the
shock-fixed system. Note that in the (§,§)—system, the
wall moves at the speed of the shock US, and in this co-
ordinate system the flow is steady. Defining nondimensional

variables in the shock-fixed reference system by

Z = % (5.11a)
A '~ v
n } Re; § (5.11b)
R (5.11c)
i

®
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where the Reynolds number is defined by
peUeL
L. U

e

(where ﬁe =Ug - Ue) and the related inverse velocity

gradient variable by

~1
A % %
5 = |8 (5.12)
an
the integro-differential equations in (3.3) and (3.4) take
the form
l ~
a S ofa Se a¥e ofs o¥e ota ¢'
— f.(un-)pﬁ‘feudndunn = - fi(u,g,.)_____r
9E P¥C | Loy
l ” ¢
- £, (ut)—te quiw (5.13)
T T R ah% ¢ 1
— f’(uuw)hxpxguwwdu** = e £ (0 )y 5 *;7)
i i guw* Pr
9 Iy PR | oy
, 1 o £ (u®®)
-\f.(u**)h*~£7} - [ @+Q~J Bh&I L - du®
i 0% y Pr| ouws 0%
&l**:w w -

l B " ¢ Ue l
- hafi(uﬁ*>_“7du** ¥ T [ ¢A £ (ufft)guhn (5.14)
W 0% g.v er pt@ L

The freestream velocity ﬁe is taken from the normal shock
tables, and w is the ratio Us/ﬁe, of the velocity ahead of

and behind the stationary normal shock. The boundary
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conditions associated with (5.13) and (5.14) are:

x A ~
piei(§=0) = 0 (5.15a)
h* (E=0,u**#w) = 1 (5.15b)

As discussed in Section 3.1, the weighting and approximating.
functions associated with fi(u**) and p*g'must satisfy the
proper physical characteristics. Now, however, the approxi-
mation functions are formulated with a nonzero velocity at
n = 0. Also, the inverse velocity function 6 is now negative
because the highest flow velocity occurs at the wall and
decays monotonically across the boundary layer to the value
ﬁe at the outer edge.

The - approximating functions are also derived in Appendix

A for shock-fixed coordinates. They take the form:

o*8 = i:%;;'[(w+l—2u**)poéq+(u**—w)pl§l] (5.16)
Q Q, 7
-11%
QA=* i~u ; {(w+l-2u**) ? + 4 (u¥**-w) ~—%— } {5.17)
p*o  (1-w)™ L °o%%6 P18,
1 f
h* = —=——s | (w+1l)h _~dwh +w (w+l) +[-(3+w)h
(1-w)“~ L
+ 4(wtl)h =~ (1-3w)] u** + (2ho—4hl+2)u**2} (5.18)

The approximation functions preserve the characteristic

listed previously. The free parameters are obtained from

v, =¥ (5.19)
u**=j /N

where i=0, 1, and
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p*6 (5.19b)
and

¢

0
m
e s o,

o 9
pr °F - Pr (5.19¢c)
The weighting function is taken to be

£, (ur*) = (l-u*x)’

i=l’2,-'oN (5.20)
Substitution of these approximating and weighting functions

into the integro~differential equations (5.13) and (5.14)

leads routinely to the following differential eguations:

~ - r -
~ 1 ; q)
(po O) 2.
A = B 0ol (5.21)
i3 o i3 g .
(py8;) S
- | P19

where the elements of the matrix Aij are

(w+1)(1-w2)/2-2(1-w3)/a

jui}
i

11
a,, = (1-w’)/3-u(1-w?)/2

ay, = (wrD(1-w?)/2-(1-u)/83-2(2-w")/a+2(1-w? )/
ayy = (1-w?)/3-(1-u™)/u-ul (1-w?)/2-(1-w®) /21

and the elements of the matrix Bij are

byy =1

by, = 0 }
P21 2F17W)‘2[(w+1?[l"w“(1‘“2>/23~(l-w2)/2+(1-w3)/a}/<z-w)Q
by = 8[(l-w?)/20(l~w3)/3*wgl_w“(lme)/zﬁv/(l%wjg,
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The energy equation is obtained as:

=r= = (RHS-LHS)/AR (5.22)
<
where
RHS = RES|p 8 8. ,w,h_,h e
£ - huleo 0501 17 aloa l,¢_._"\ rj %
LHS = LHS|p 8 .o 6. ,u,h oho 6., 220 |
BRSNS AR MR SR N VY I
1
AH = Aa(w,aoeo,plel)

The derivations for RHS, LHS, AH are shown in Appendix H.

The boundary conditions associated with (5,21) and (5.22)

are:
040,(£0) = 0 (5.23a)
0,0,(E=0) = © (5.23b)
hl(ézo) = 1 (5.23c)

The solution of equations (5.21) and (5.22) with boundary
conditions\(5.23) will now be separately discussed for a

perfect gas with @ = constant and for a real gas (nitrogen).

5.2 Perfect Gas Solution

The matrix Aij is nonsingular. Upon assuming a perfect

gas and setting ¢i = 1, equation (5.21) may be inverted to

give -~ . .
~ ! l
(0080) 3
= E,. c o (5.24)
A 3 l
J P1%1
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: -1 . . -1
= . s hich A, .
where Eij Aij B13 in whic i3

the matrix_Aij. The energy equation depends on both ¢i and

is the unique inverse of .

(¢/Pr)i. Choosing ¢=1 and setting Pr=0.72 (a constant) the

elements of eguation (5.22) take the form:

RHS = RHS(pogo,plel, w,ho,hl,Pr)‘ (5.25a)
LHS = LHS(poéo,pl’él, w,h_/h,Pr) (5.25b)
AH = 'AH(po'éo,plel) (5.25¢)

The derivation of the above equations follows directly from
the more general results given in Appendix B. The boundary
conditions given by equation (5.23) are unchanged.

The integration of equations (5.22) and (5.24) with
boundary conditions (5.23) was achieved by standard numerical
computation on an IBM 7094 computer using an Adam-Moulton
variable step-size routine. The error margin during compu-
tation was set so as to be dynamically related to the current
growth characteristics of pogo' plgl and hl' thus assuriﬁg a
small error in the fifth decimal place. Since the upper limit
of £ is unbounded in the context of the present problem, it
was varied from zero to an arbitrary value of unity.

Upon substituting the numerical solutions for the
parameters‘poﬁo, pl§l, and hl obtained from equations (5.24)
and (5.25) into the approximations for p*8 and h* given by
equations (5.16), (5.17), and (5.18), the standard boundary-

layer parameters may be computed from the following

definitions:



Skin-friction coefficient:

o ¢

~ A - 0

Cf ReL = 5
'Re

pOO

Velocity profile:

u**
L=/ = | 8 *k
A L f 6 du
w
Boundary-layer thickness: .
§_~\ 8 - 3 * %
I Re, f g du
w
Displacement thickness: %
Ye
$* [Re, = 8 (L-p*u**)du**
L L
w
Momentum Thickness: *%
4]
e
S*% [fe, = prBuR* (1-ur*) du¥*
L L
w

Energy dissipation thickness: .k

. U
e

L ¥ A
\/ Rey, [ p*eu**(l-u**z)du**

]

tjor

Nusselt number:

Nu(l-h) 1 (Bh* }
6

Re

o - u¥t=yw
L
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(5.26a)

(5.26b)

(5.26c)

(5.264)

(5.26¢e)

(5.26£)

(5.269)

The relation between these parameters and the conventional

definitions for a plate-fixed coordinate system is given in

Appendix D. Note that for a perfect gas with constant

specific heats'p* is related to h* across the boundary layer



by the simple relation p* = 1/h¥*.

Calculations were made for 2 < w < 6 with ¢ = 1 and
Pr = 0.72 and the results are given in Tables 1 and 2.
Typical results for the skin-friction coefficient, velocity
profiles, and enthalpy profiles are shown in Figures 4, 5,
and 6, respectively. The present results for the enthalpy
profiles are compared with Mirels' [1l] calculations in
Figure 7 (note the change in scale of the abscissa at u**=2);
this comparison shows agreement within 3 percent or better
for all the values of w. The present calculations for the
boundary~layer parameters are in excellent agreement with
those of Mirels [l]. For example, it is found that the skin-
friction coefficient calculations agree within better than a
percent over the entire range of the present calculations.

It is now of interest to consider the solution of
equations (5.21) and (5.22) where the thermodynamic and
transport property parameters are related to real gas varia-
tions for nitrogen. By gaining confidence in the accuracy
of the MWR second approximation through the above comparison
with Mirels' [1] solutions for a perfect gas, it will then
prove possible to draw certain conclusions regarding perfect

gas and real gas behavior.

5.3 Real Gas Solution

Equations (5.21), (5.22), and (5.23) were also solved
assuming a real gas in thermodynamic equilibrium. Nitrogen
was selected as the gas for these calculations with the

thermodynamic and transport properties being taken £f£rom
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Ahtye and Peng [14] as curve fit by Marvin and Deiwert [15].
Results were obtained assuming an initial pressure of 0.001
atm and an initial temperature of 530°R. The values of ¢

and ¢/Pr as a function of h/hr are obtained from the pro-
perty polynomials given in Appendix C. The reference

enthalpy hr is given in Table C-1. The real gas properties
are related to the approximation functions ¢i and (q)/Pr)i by
equations (5.7) and (5.8), and the values of enthalpy ratio
used for evaluating these variables are obtained from equation

(3.19b) together with the following expression
%
%""= "—'ghi ; i:O'l'.lON_l (5.27)

The numerical calculations were again obtained on an IBM 7094
digital computer using an Adam~Moulton numerical method.
The boundary-layer parameters defined by equations (5.26)
.were calculated for various values of the shock wave parameter
w and the results are given in Table 3. The variation of
skin~friction cqefficient and Nusselt number with E is shown
in Figures 8 and 9, respectively. On comparing Figure 8 with
Figure 4, it is seen that there is considerable departure
from the perfect gas calculations for the skin-friction
coefficient. For example, at w = 6 and € = 1, there is a
four-fold increase in the nondimensional skin-friction when
the real gas properties are used. By reference to Tables lc
and 3¢, it is seen that the numerical values of poéo differ
by less than 0.2 percent. The large real gas variation in the

skin-friction coefficient is, rather, accounted for by the
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variation in the ¢o as shown in Figure 10. It is seen in
this figure that ¢o is increasing in a exponential fashion
with increasing w.

Comparison of the values given in Tables 1 and 3 show
that, except at w = 2, the boundary-laye; thicknesses are
somewhat smaller for a real gas. Typical enthalpy profiles
for both the real and perfect gas solutions are shown in
Figure 1l. In general, the real gas departure from the
perfect gas model increases for all of the computed quantities,

as expected, as the shock strength increases.
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6. SUMMARY AND CONCLUSIONS

The laminar boundary layer immediately behind a shock
wave moving over a flat plate has been analyzed for both a
perfect gas and a real gas in thermodynamic equilibrium.

The method of weighted fesiduals was employed as an approxi-
mation technique for solving the appropriate partial differen-
tial equations and the results for a perfect gas were compared
with those of Mirels [1], and where applicable, the solution
given by Lam and Crocco [4].

It was found that, for a perfect gas, the first MWR
approximation led to a simple analytical solution which
agreed remarkably well with the more accurate solutions of
Mirels. Further, it was shown that higher MWR solutions
could theoretically be obtained from simple algebraic equa-
tions (for a perfect gas) to any desired accuracy.

By feverting to a shock-fixed coordinate system an MWR
second approximation numerical solution was obtained for both
a perfect and a real gas (nitrogen). This led to very accur-
ate boﬁndary—layer parameter calculations when compared with
Mirels' [1] perfect gas results. It was also possible to
compare the effects of real gas»behayior on the boundary layer
and, as expected indicated increasing departure from perfect

gas computations as the shock strength increases.



The primary utility of the work reported herein is its
application to the shock induced flow over a semi-infinite
flat plate where the leading-edge effect is taken into
account. This extension, where boundary-layer assumptions

are retained, is given in a companion report.
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Velocity Profile Dependende on Distance from Fixed Shock

w = 2,

Table 2a

¢ = 1, Pr =

72

Second Approximation

% Re,
uk* £=.1 £=.3 | £=.5 | g=.7 £=.9
2.000 0.CCC00[0.0CC00}0.00000]0.00000]0.00000
1.800 0.06819}0.118120.15249] 0.18C43} 020459
1.600 0.14787{C.25613{0.33067| 0.39125}0.44364
1.500 0.15456]C.33700{0.43507| 0.51478} 0.58371
1.400 0.24852)0.43C46[0.%5572| 0.65754| 0.74558
1.30C 0.31396]C.54371 0. 70206| 0.83069]0.94192
1.200 0.4CC37)C.6924810.89528|1.05931{1.20115
1.100 0.53799|0.931841.20301} 1.42342{ 1.61401
1.010 0.96065}1.66393}2.14814] 2.54171] 2.88203
1.001 1.37178} 2.376953.06748| 3.62950] 4. 11547
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Table 2b

Velocity Profile Dependence on Distance from Fixed Shock

w =4,

¢=

l, Pr =

.72

Second Approximation

[ |
£ v ReL
ur# £=,1 £=.3 £=,5 E=,7 E=,9
4.000 0.00C00]0.00C00}0.00000 {0.00000} 0.C0000
3.750 0.0103210.017920.0231210.02735} 0.03100
3.500 0.0223410.,03879]0.05005 {0.05921] 0.06709
3.250 0.03640[0.06324{0.08159]0.09652] 0.1093%
3. 000 0.05300}0.0921010.1188310.14058] 0.15924
2+ 150 0.072800.1265710.16330}0.19319} 0.21879
24500 0.09680{0.16837 [0.21723 |0.25699] 0.29100
2.250 012654 {0.22019]0.28409}0.33609] 0.38049
2. 000 0.164600.28653 [0.36969 |0.43736] 0.49504
-~ le 8OO 0.20414|0.35547 |0.45865|0.54261] 0.61407
1.600 0625682044737 [0.5772210.68290] 0.77271
1.%00 0429100]0.50701 {0.65417{0.77394] 0.87565
1.400 0¢33350}0.5811710.7498610.88715} 1.00364
1. 300 0.38915]0.6TR2B0.87516}1.03540] 1.17124
1.200 0e4687910.81729.§1.054%2 |1.24760] 141113
1.100 0.60703}1.0586211.3659011.61602}1.82758
1.010 1.07345[1.87294 |2.41659[|2.85914] 3.23270
1.001 1454227 12.69148 |3.47273|4.10871] 4. 64508




Table 2c
Velocity Profile Dependence on Distance from Fixed Shock
W=5,¢=l, Prz.72

Second Approximation

% V Rey
ur* £=.1 £=.3 £=.5 £=.7 E=.9
6. 000 0.00C0010.00C00]0.00000]0.00000| 0.C0000
5.750 0.00029]0.00050{0.00065|0.00076] 0.00087
5,500 0.0012010.00207}0.00267}0.00317| 0.00359
5.250 0.00279}0.0048410.00625|0.00739| 0.00838
5. 000 0.00516]0.00894|0.01155|0.01366] 0.01549
4.750 0.00841]0.014560.01880}0.02225]| 0.02523
4.500 0.012650.0219010.02828}0.03346| 0.03794
4.250 0.01802{0.0312210.04030]0.04769} 0.05408
4,000 0.02473]0.0428310.05529|0.06543] 0.07419
3, 750 0.0329910.05713{0.07376|0.08727| 0.09896
3.500 0.043090.07464|0.09636}0.11402}0.12929
3,250 0.05545 10.0960310.12398}0.14670| 0.16635
3. 000 0.07057 |0.1222210.15780{0.18672} 0.21172
2.750 0.08921 [0.15450]0.19947|0.23603] 0.26764
2.500 0.11244{0.19475[0.25143|0.29751| 0.33736
2.250 0.141970.24583]0.31744]0.37562} 0.42593
2.000 0e18C60{0.31279[0.40382|0.47783| 0.54183
1.800 0.22166{0.38356[0.49519]0.58595] 066442
1.600 0.27672|0.4792710.6187510.73216| 0.83022
1.500 0.31294 |0.54200 {0.69973]0.82798| 0.93887
1400 | 0.35826]0.62049[0.80108/0.94790] 1.07485
1.300 0.4179810.7239310.93462}1.10592] 1.25403
1.200 0.50399[0.87289 |1.12692{1.33347] 1.51206
1.100 0e65417 113301 |1.46274[1.73084] 1.96265
1.010 1.1638712.0158212.60249(3.07949} 3.49190
1.001 1.6772312.9049003.75031}4.43770} 5.03201
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APPENDICES

APPENDIX A

ON THE DETERMINATION OF COEFFICIENTS IN APPROXIMATING FUNCTIONS

In this appendix, a procedure is given for computing the
coefficients in the approximation functions. The variab;es
whose coefficients are required are p¥*@, B*, ¢, ¢/Pr, and
the physical conditions which must be preserved by the
functional approximations have been given in detaill in
Section 3.1. The equations for determining the N coeffi-~
cients in the approximation function for an arbitrary vari-

able ¢(u®), is obtained by collocation:

N-1
plu®) = E: aiu*:L (A.1)
i=0
where it is recalled, N=1, 2 ., . . correspond to the order

of approximation in this study, and O<u*<l. Any method may
be adopted for choosing values of u®* in the allowable inter-
val for which equation A.l is exact. A compatible system
of simultaneous equations is obtained in the form stated

below if exactly N collocation points are taken;

~l ui u§2 ‘o u§N~l~ Pao ] —wo ]
1 ui uiz e uiN"l a ¥y
. . C . SR .
. ug-z uﬁ-z-‘- uﬁﬁgl -2 | Yn-2

i ! u§—1 u;gl”‘ “§§;{A | ®n-1] wa-l“



or the redundant system below

% fo
1 uo uO

% %9
1 ul ul

% %9
1 Uy-2 Uy-2

[3 %0
1 UN-1 UN-2

i’b :’f 2
1 uN uN

& £
e P T U PR P

.

YNeg-1

(A.3)

if more collocation points than the minimum required to

solve for a, in equation (A.l1) are taken.
that equations (A.2) and (A.3) are identical for j=0.

The system in equation (A.2) can be solved easily and

exactly for small values of N.

and in general, equation (A.3) must be solved by any

approximate methods;

are recommended.
In this study,

such that

It is clear

For higher values of N,

least-square or regression methods

the points for collocation are chosen

e

(A.4)
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where 1 = 0, 1, 2,
and

L
where i = 0, 1, 2,

A.l1 Approximating

70

(A.5)

it
-
~~
o
i
e
~
2
S

Functions in Plate-Fixed Coordinate System

In the.plate
points of collocat
In the schem

the collocation pr

fixed reference, equation (A.4) gives the
ion.
e of the first order approximation, and

ocedure defined above, the following

equations are obtained,
p.0
s = 00O
pkO = e (A.6)
1 l-u®
== = (A.7)
po Po®o
voE oy, o+ (1-y,) u¥ (A.8)
and in the scheme of the second order approximation;
pHp = —1_ [(1-2u%) p 6. + u*p_08_1] {(A.9)
l-u# 00 11 :
Q Q
9= eud) [((1o2us) o0 v buk—t- | (A.10)
p¥o Po®o P18y

v E by t (-3

2
% - &
by t “wl 1lu® + (zwo uwl + 2)u (A.11a)
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where

©

.
bl

(A.11b)

=
i
N
-

ol-e-
b

A.2 Approximating Functions in Shock-fixed Coordinate System

The collocation procedure in this reference system
is the same as defined above, except the choice of collo-
cation points need to be modified. Because the velocity
at the wall is finite in this case, the corresponding

collocation points are obtained at

=
it

W o+ (l—w)% (A.12)
where i = 0, 1, 2, . . . N-1

When w is replaced by zero in equation (A.12), a direct
algebraic correspondence can be seen between this equation
and equation (A.4). With the variable which is to be

approximated given by

ded
wi = pu¥® = ug ) (A.13)

Equation (A.l) can be used for calculating the coefficients

d, .
1



The approximation functions under the first order
approximation are obtained by setting N equal to unity in
the collocation equation (A.l), and using equations (A.12)

and (A.13) to choose the collocation points yields:

-~ . l- ~
p%g = 1-z** 048 (A.14)
% Q
Q_ = i u 0 (A.15)
* g W 0.6
P 0°0
~ l oo ofe
By =2 m [\’)O—W + (l"\l’O) u®®] (A.186)

In equation (A.16), the identities given by equation
(A.11b) are assumed.

In the second order approximation, N is set equal to
two in equation (A.1l), and the collocation points are
chosen as in the section above; this leads to the following

equations:

an . 1 PR " 5 N '
p%8 2 s [(utl-2u Ie 8, + (ud ~w)p, 6,1 (A.17)
Qo l-u* —ou¥k# 6 o A
- 5 [(w+l-2u )poeo + 4(u —w)plel] (A.18)

p®e (1-w)

and

Vo= @30y F a5t a4y

BE3
12%0 * 2po¥y + agglu

2
+ a )u?'::"'

T oay3%, 33

13%0 (A.19)



where

il

12

i3

21

22

23

31

32

33

The procedure

]

wt+l

(1-w)?

w+3

2

(l-—w)2

Yw

-

Y{w+l)

(l—w)2

I

w{w+l)

(l-—w)2

(1-w)?

2

(l—w)2

(l—w)2

(l~w)2

(1-w)2

1+3w
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(A.20)

(A.21)

(A.22)

outlined above can be routinely extended

to higher values of N. It may be pointed out that in the

above equations, the equality sign has been used where it

is strictly correct in the mathematical sense.

approximation functions are exact only at the collocation

points and errors are expected at intermediate points.



APPENDIX B

DERIVATION OF ENERGY DIFFERENTIAL

EQUATION FOR SHOCK-FIXED ANALYSIS

The steps‘for reducing equation (5.14) to the form
given by equation (5.22) was omitted. In this appendix
the functional relations defining RHS, LHS and AH in
equation (5.22) will be derived.

With the aid of a weighting function given by

£, (uk%) = (1-u#%%)*
and approximating functions defined in A.2, the integro-
differential equation
s 1 gt e A g N L !
—_— f.(ud®)nh¥ptguiddyu®® = | F, (u®%)m—my =— -
S¢ ‘1 ‘ i dJu¥= Pn %9
W p u':'{*:w
1 . £, (u%%)
t ®
- f.(ua’:-}:)hz’:..gl.:. - qt,.,.i_ ..?.B_m __3‘._.7__.._ du%®
1 % Pr aunw N
P 6 u**:w w e *0
1 u? 1
o, n (R ¢ N e o, e ¢ Ly ofs o o
- hdfi(u““) ~ dus® + T ‘ - fi(uxn) du#®
W p%o Be"Medy p¥o
can be integrated analytically. It is convenient to

define the following functional groups
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(5.22)

(S.18)



1

LA = 37 £f.{(un%)hdphogussduss
3E W
F3 t :
RA = -|f, (ue2)2D2 ¢ 1 el (urayps—2
. i dgu®w Prp %0 i x5
p ufnf=y P urft=y
F.(u%s)

W
1 1 ¢
RC = ij— hetf, (uf®) e
w

A ]
Ue 1

RD = gthef .
w P

-

£ . (u**
1

ar,

* 0

) du:’i*

(B.

(B.

(B.

(B.

(B.

Substituting the approximating functions obtained in

1)

2)

3)

4)

5)

Appendix A.2 for h¥*, p¥*86 and Q/p*6 the following results are

obtained:

LA = 2. [AB(w,h ,h,)
X3
+ AC(w,hO,hl)
+ AD(w,hO,hl)
where
AB(W,hO,hl) = *-i**g
(1-w)
AC(w,hO,hl) = -i-5
(1-w)’
1

1

AD(w,hO,hl)

(1-w)?

~

AB1(w,p .0

08osP187)

ACl(w,poeo,plGl)

ADl(w,poeo,plel)]

[(w+l)ho—4whl+w(w+l)]

[—(3+w)h0+4(w+1)hl-(1+3w)]

(zho—uhl+2)

(B.

(B.

(B.

(B.

6)

7}

8)

9)
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i

ABl(w,poéo,plél> [(w+l)(l—wQ)/2-2(l~w3)/3]poéo

+ [(l—ws)/S—w(l—wz)/ijlél' (B.10)

ACL(w,0,0.,0,6,) = [(wt1)(1-w")/3-2(1-u")/43p 0,

171

¥ [(1—w”)/u-w(1-w3)/33plél (B.11)

H

R 4 5 "
lel) [(w+l)(l-w )/4-2(1-w )/5]9060

ADl(w,poeo,p
5 4 ~
+ [(1-w")/5-w(l-w )/u]plel (B.12)
whence

LHS[poeo’plel’w’ho’h1’¢o’¢1’(%?) ’(%F)]
0 1

= AB(w,h,,h;) AB2(w,p 0,,p,68,) + AC(w,hy,h,)

x ACQ(W,pOGO,plel)+AD(w,hD,hl)AD2(w,p060,plel) (B.13)
and
~ ~ _ l ”~ "~
AH(w,pOGO,plal) = 5 [—HwABl(w,poeo,plel)
(1-w)
+ 4(w+l) Ac1(w,poeo,plel)-uAnl(w,pon,plel)l (B.14)

And the variables AB2, AC2, and AD2 in equations (B.1l3)
and (B.1l4) are defined by the following functionals:

~

6. )

ABZ(w,poe CININ

00187) = [Gi1)(1-w?)/2-2C1-u") /315
P19

+[(l—w8)/3—w(l—w2)/2]%€( )

(B.15)

~

A 3 Wy ad
ACQ(w,pOGO,plel) = [(w+l)(2-w")/3-2(1-w )lujag(poeo)

+[(1-w“)/u-w(l-ws)/%%E(plél) (B.16)



- " 4 5 P N
ADQ(W,pOGO,plGl) = [(w+l)(l-w )/ B-w(l-w )/5353(9090)
8 L 0 I\
+[(1-w")/5-w(l-w )/4]55(9161) (B.17)
: ¢
- ) o Pr
0 oh= 0
RA(W,h0,¢O,pOeO) = hw 5 ’(l-wiﬁaxg) g
pO O u*%’t:w pO 0
(B.18)
where
- 2
hw = AB(w,ho,hl)+wAC(w,h0,hl)+w AD(w,hO,hl) (B.19)
b3
(%%;x) = AC(w,hy,h, )+2wAD(w,h ,h ) (B.20)
sty
RB(W’hO,hl’¢O’¢l’p060’plel)
- 1 A A
= """"""""‘é‘ [RBl(W,hoahl9¢Os¢l)poeosplel)
(1-w)
+ RBQ(w,hO,hl,¢0,¢l,poeo,plel)] (B.21)

The functional relations RB1l and RB2 in the above equations

are defined as follows:

RBlgw’hO’hl{¢O’¢l’pOGO’p 8.) = AC(w,hO,hl) [(w+l)

11
¢
0ot (557]
0 Pr
x [l—w-(l—wz)/2]~2[(l~w2)/2—(l—w3/3]](-——-—-£———-—-q)
P00
¢
2 3 2 ¢l+(§;)l
+ B[(1-w2)/2-(1-w")/3-w(1l-w2)/2] {M)
p.O

171 (B.22)
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~

RBQ(W,hO,h ) = 2AD(w,h_ ,h. )

1°%0°%12°0%:°1% »Poafy
x{[}w+1)[(1_w2)/z-<l-w3)/33-2[<1-w3/3

$
_(1—wu)/4]]( QP ) ) 4[(1~w3)/3—(l—w4)/4
0

(73, )

-w[(l-w2)/2-(1-w3)/31]( -
6

(B.23)
RC = 0 (B.24)
~ D
~ ~ ~ Ue
RD(Ue,he,w,¢o,¢l,poeo,plel) = é::ﬁ:;{l‘w+l)[l—w
C2(1-w2)/24(1-w>)/3]-20(1-%2)/2-2(1-w>)/3
4 % 2 3 y
NSRS VIS | e eu[ (1ow?)/2-21-w") /34 (1w /1
p,.6
00
o2 3
~wll-w-2(1lew")/2+(1~w )/3]] ‘} (1~ w) (B.25)
P19y
whence
” - 9 0
RHS(poeo,olﬁl,w,ho,hl=¢o,¢ls(§;)o,(g;}l)

[

+RC+RD(Ue,he,w,¢o,¢l,poeo,plel) (B.28)
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The differential equation governing the conservation of
energy is obtained by combining equations (B.13, (B.1l4)

and (B.26) to give
—= = (RHS - LHS)/AH (B.27)

The integration of (B.27) was accomplished simultaneously
with the momentum equation, at which time simultaneous

values for 8(9060)/3£ and a(plel)/ag are available.
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APPENDIX C

METHOD FOR DERIVATION OF POLYNOMIALS FOR REAL GAS PROPERTIES

The real gas properties of nitrogen tabulafed by Ahtye
in reference 14 form the basis for the real gas properties
used in this study. This source appears satisfactory pri-
marily because it provided adequate information for a least
squares curve fit of the desired property variables in terms
of enthalpy.

The coefficients in the property polynomials used in
this study were taken from reference 15, The method of
their derivation is presented here for completeness only.
The tabulated data of reference 14 were fitted in generally
overlapping segments with seventh degree polynomials in the

enthalpy ratio, expressed in the following form:

h |1
’ = Zj ai(B__\ (c.1)
1= 1’}

where

r'p (c.2)



and the variables designated P> Hpo hr are respectively

r
the reference density, dynamic viscosity and enthalpy.
These reference properties are chosen to normalize the
related variables, and hence reduce the overall magnitude
of the coefficients, a, .

The a,s (i =0, 1, 2, . . 7) are obtained by solving
the simultaneous systems of equations formed by writing the
equation (C.1) for at least eight values of h/hr in the
segment of property variation that is being curve fitted.

Thus the equations obtained for any of the properties in

equivalence equation (C.2) can be written in the following

form:
- iIroir -
(h/h_) (h/h )2 (h/h )/
1 / 0 1 ... )0 aO wo
1 (h/h) (h/h )2 (h/h )’
r’l r’1 e / r°1l al wl
&l | ¥2
. 8.3 t{)s
e a,l= wu (Cc.3)
1 (h/h.) (h/h )2 (h/h )] a
2’7 pl7 e r’7 5 | ¥s
sl | s
y 7] Y7
2 2 7
1 (h/hr)7+j (h/hr)7+j"'(h/hr)7+j ¢7+j
L _ L A
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In the above eguation, (h/hr)i is the enthalpy ratio taken
at the i-th location, and wi is the value of the dependent
variable whose seventh degree polynomial in terms of h/hr
is being sought. The form of equation (C.3) is general,
and the development in this appendix applies to the other
properties stated in equation (C.2). If'j=0 the system
(C.3) is compatible and can be sclved for the ai's exactly
by well-known method of Gaussian elimination. When 3>0,
then the system has a redundancy of 3, and a solution may
be sought in which some criterion of error minimization is
satisfied. In reference 15, the criterion guaranteed a
least square deviation at the curve fit peints.
The reference values of Pps Mo hr are presented in
Table (-1, and the coefficients in the seventh degree poly-
nomials for nitrogen gas properties are given in Table C-2
for pressure in the range0,001 to 100 atmospheres. The
values of specific heat at constant pressure are given in

Table C-3 as a function of h/hr for the same pressure range.



Table -1
REFERENCE NITROGEN PROPERTIES

h = 0.21606 09 [£t%/sec?]

Slu Slu
« 0001 0.10398E~-07 0. 21380E~-13
«001 0.96345€6<07 0.20898E~12
«01 0.88964E~-C6 0.20472E-11
el 0.81765E~CS 0.20028FE-10
1 0.T4T80E~04 0.19501E~09
10 Q.68241E-~013 0.18991E~08
100 C.62148E--(02 0 18432E-07
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Table C-3

Nitrogen Specific Heat At Constant Pressure

h/h

Pressure Atmospheres

r .0001 | .001 .01 .1 1 10 100
0.02 | 0.24936]0.24936[0.26936| 0.24936{0.24936{0.24936{0.24936
0.04 | 0,26205}0.26205 {0.262D5| 0.26205} 0.26235|0.,26205 |0.26205
0.056 | 0.28279]0.282790.28279{ 0.28279]0.28279{0.28279{0.28279
0.08 | 0.29419]0.29419[0.29419] 0.29419}3.29419|0.29419 {0.29419
0.10 | 0.30154]0.3015% [0.30154| 0.30154]0.30154[0.3015¢4(0.30154
0.12 | 0.30547]0.30540{0.30533} 0,30533}0.30533]0.30533{0.30533
G.14 | 0.30679[0.30806 }0.30807]0.30824{0.32830{0.30836{0.20836}
0.15 | 0.32186}0.31459 {0.31166]0.31106}3.31086}0.31066{0.,31066
0.18 | 0.34731}0.32451 [0.31608]0.31368}0.31288[0.31214{0.31213
0420 | 0.46052}0.34945 [0.32481{0.31671{0.31476}0.31393/0,31329
0.22 | 0.64175[0.47521 {0.38200{ 0.33628]0.32125/0.31677{0.31479
024 | 0e89363]0.69650 |0.475562] 0.37534]0.33518{0.32144/0.31694
0.26 | 1.21545}0.89846 |0.59708{ 0.44487{0.36511{0.33175]0.32037
0.28 | 1.56753|1.0884210.78043}0.54814}0.41121{0.35065}0.32770
0.30 | 1.86564]1.29666{0.98235{0.66389[0.48412}0.38070{0.33895
0.32 | 2.15032}1.53052{1.16536|0.30801{3.56958}0.42296{0.35586
0.34% | 2.42155[1.78288 [1.34263{0.96881]0.66646]0.48163]0.38085
0.36 | 2.67935[2.041881.53074]1.11990{0.782B4}0.54722]0.41259
0.38 | 2.92841{2.28255{1.72244] 1.27001{0.8986%]0.62229]0.45211
0,40 | 3.16850]|2.52218 {1.91771{1.42378|1.01599|0.70521|0.49748
0e42 | 3.39776[{2.76079{2.11539]1.57936{1.13625{0.76962]/0.55035
O.44 | 3.61619}2.998382.30613{1.73933}1.25908}0.87753}0.60539
0.46 | 3.82379{3.23532[2.49584]1.89274{1.38511]{0.97033{0.66568
0.4B | 4.02055]3.43523|2.68451]2.24446{1.50645|1.06157{0.72832
0.50 | 4.13995[3.62256[2.88770{2.19447{1.62641{1.15317|0.78993
0.52 | 4.33892{3.79731[3.05278{2.34925}1.74618}1.24378/0.85153
0.5% | 4.53587{3.95949 [3.20698{2.48436!1.856837{1.33372({0.91314
0.56 | 4.73081/4.10310/3.35028{2.51182]1.96637}1.42321|0.97475
0.58 | 5.44268{4.21829 [3.48269|2.73162]2.06852}1.51227]1.03635
0.60 | 5.80213]4.3522513.59006}2.83669{2.16945{1.60184]1.09796
0.62 | 6.06475]4.4T770(3.70399[2.94373}2.26723]1459141}1.15957
Oubth | 6.23057]4.53462|3.80357|3.04524]2.36186]1.78098]1.22117
066 | 6.29956]4.70303{3.90680]3.14122]2.46330{1.87054}1.28278
0.68 | 6.2T174} 4.97552 [3.99568]3.23167{2.54492}1.96011]1.34438
0.70 | 6.14710{5.07758 [4.07621{3.35117{2.61794]2.04958]1.40599
0.72 | 5.92564]5.14248 [4.23%61]3.420R82|2.68242]2.13925} 1.46760
0.74 | 5.60736{5.17023 (4.28417]3.47644[2.73834|2.22882|1.52920
0.76 | 5.03647}5.16082 {4.30712]3.51203{2.78571]2.318381.59081
0.78 | 4.6902905.11426 {4.30348]3.53358{2.82575|2.40795] 1.65242
0.B0 | 4.36782[5.03053 [4.27323}3.55145[2.88059]2.49752| L.71402
0.82 | 4.06905]4.91478{4.23390]3.539022.93%44}2.58709] 1.77563
0.84 | 3.79400]4.75691 [4.15148}3.50727{2.99028]2.67656| 1.83723
0.86 | 3.54266]4.56084 {4.03B810]{3.45620{3.04512}2.76622|1.89884
0.88 | 3.31503]4.32657{3.89375}3.403648'3.09996}2.855793| 1.96045
0,90 | 3 L1111} 406258 [3471846(3.3243013.15480]2.94536) 2.02205
0.92 | 2.93090]| 3.79526 {3.54579)3.20861(3.23965| 3.03493] 2.08366
0.94 | 2.77440]0 3.46325 [3.3148%4]3.06243)3.26449] 3.12449} 2.16527
0.95 | 2.64162{ 3.0655%}3.03632)2.9957413.31933}3.21406] 2.20687
0.98 | 2.50924{ 2.60514[2.71043{2.67255}3.37417| 3430363} 2.26848
1.00 | 2.34521] 2.00206{2.28159{2.44086}3.42922] 3.39320] 2.33098
1.02 | 2.19107] 1.42480{1.87247]2.1997913.48385]| 3.48277 2.39169
1.06 | 2.04681}0.97922}1.49363{1.98205(3.53870] 3.57233] 2.45330
1.06 | 1.91244f 0.62815{1.13989{1.76431]3.59354] 3.66190] 2.51490
1.08 | 1.78795} 0.3755110.80321{1.54657}3.64838] 3.75147] 2.57651
1.10 | 1.6733500.35025[0.48217/1.328833.70323}3.84124} 2.63811
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APPENDIX D

EVALUATION OF ESSENTIAL BOUNDARY-LAYER PARAMETERS

The expression for the characteristic boundary-layer

parameters will be derived in terms of the free parameters

piei and hi’ i=0,1 that were used in Appendix A in the
determination of the coefficients of the approximating
functions, and the shock intensity parameter, w.

The skin friction coefficient, C in the shock«fixed

f’

reference can be written as follows:

" (?Ji
A v 3y
c. = L
£ 2
Peve
whence
~ -~ ¢
~ 0
Cf ReL = 5
PoY0
where,
~
O U
¢ =
0 Pete
u:':h":w
and

(D.1)



To facilitate the comparison of eqguation (D.1) with exact
sclutions obtained by Mirels in the shock-fixed reference,
the corresponding equation for skin friction coefficient

developed from reference 1 can be written in following form

Ef Re = Vzi/%"(o) (p.2)

L

where f is a function of the similarity variablenm given
in equation (4,10), and f"(O), evaluated atnm=0, is inde-
pendent of £ in the entire range Oféfl.

In a coordinate system which is stationary with res-
pect to the wall, the value of the skin friction coeffi-
cient can be obtained in a form similar to equation (D.1).

This is as follows:

c Re_ = (D.3a)

where

u*:O (DnSb)

On account of the difference in the stretching of the trans-
verse coordinate, and the difference between the nondimen-
sional velocities in the shock-fixed and the fixed-wall
references, the inverse of the gradient of the nondimensional

velocities in the two references are not equal. For the same

89
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reasons, th; skin friction coefficients given by equations
{(D.1) and (D.3) cannot have the same values, but are related
through some multiplying factor. Equation (D.3) determines
the skin friction coefficient in the physical coordinate
system. In order to relate equation (D.3) to (D.1), it is
facile to use the fundamental transformation equations
(2.7a ), (2. 7h ) and (5.11b), the essential parts of which

are reproduced here:

n = % (2.7n)

n = (5.11b)
e
sk
n¥= E..‘:’.._L-l.j.‘_. (D.Ur)

and using the definition of the inverse of the gradient of

the nondimentional velocity gradient:

o = u® -1
an

- P ~1
6 = (3‘3 ) (D.5)
an .

t

~

Then the relationship between 6 and 8 can be obtained in

the form

%=_W S (D.6)
6



and from which the skin friction coefficients given by

equations (D.l) and (D.3) are related by

~

1 -
C Re, = - w——meaee Re (D.7)
f L (w-l)3/2 £ L
The heat transfer at the wall is estimated from the heat

conduction at the wall surface or from convective exchange

between the wall and the freestream:

i 9h uhe Y Re |ah%*
b = T - (D.8)

Pr an

{a]
13
[p]
~
=
i
o
~—r

(D.9)

where G is the unit heat convective coefficient of the wall
surface. Combining equation (D.8) and (D.9) yields the non-
dimensional Nusselt number, Nu, given by the following

relation:

_ 1 oh#
Nu(l-ho) = é (W) ReL (]?.10)
0 u-‘--’::w

In addition to the skin friction and convective coefficilient

defined above, the following boundary-layer parameters are

defined below:

i. Boundary-Layer Thickness

s
«

L e
§ = ey 6 duw (D.11)
Re

L ¢}



ii. Boundary-Layer Displacement Thickness

L Ve
5% = (o~u®p®o)du* (D.12)
- ’ReL o)
iii. Boundary-Layer Momentum Thickness
e
8 = L__.__- fp*e(ui':_uﬁ'€2)du* (D.l3a)
- /ReL [o) ‘
iv. Boundary-Layer Energy Dissipation Thickness
Shk Ue 2
s =z p*eu*(l_u}% )du* (D.le)

== |
In the above integral equations, it is assumed the outer edge
of the boundary layer is adequately located at the point
where Ué =0.995, This choice is consistent with standard
practice in boundary-layer analysis, since in all of these
equations, it can be observed that the upper limits of inte-
gration éannot be unity. At u%*=1, the integrals are un-
bounded.

There is some arbitrariness in literature in the defin-
ition of the Reynolds number associated with the study of
shock induced flows ovegxa flat plate. In a recent work,
Ackroyd (reference 2) formulated a Reynolds number based on

the relative motion between the freestream and moving flat

surface. In this case Reynolds number was given by



Re = (D.1w)

and for the same reasons as those stated by Ackroyd above,

in reference 1, Mirels chose the following formulation

2
pw(w—l) Uth
Re = (D.15)

My

Because Reynolds number occurs freely in all the above
expressions for bouhdary—layer parameters, it behaves as a
stretching factor. Thus the expressions in (D.1l4) and (D.15)
do not contribute to better correlation of results, and it

is the opinion of this study that they do in fact becloud

the problem of comparing the results of different authors.

In this study, the Reynolds number as it appears in the
boundary-layer parameters above is given by the following

equation:

Re, = ——o (D.16)



