59 research outputs found

    Performance, emission and combustion characteristics of a semi-adiabatic diesel engine using cotton seed and neem kernel oil methyl esters

    Get PDF
    AbstractThe performance, emission and combustion characteristics of a diesel engine are investigated using two methyl esters: One obtained from cotton seed oil and other from neem kernel oil. These two oils are transesterified using methanol and alkaline catalyst to produce the cotton seed oil methyl ester (CSOME) and neem kernel oil methyl ester (NKOME) respectively. These biodiesels are used as alternative fuels in low heat rejection engine (LHR), in which the combustion chamber temperature is increased by thermal barrier coating on piston face. Experimental investigations are conducted with CSOME and NKOME in a single cylinder, four stroke, direct injection LHR engine. It is found that, at peak load the brake thermal efficiency is lower by 5.91% and 7.07% and BSFC is higher by 28.57% and 10.71% for CSOME and NKOME in LHR engine, respectively when compared with conventional diesel fuel used in normal engine. It is also seen that there is an increase in NOx emission in LHR engine along with slight increase in CO, smoke and HC emissions. From the combustion characteristics, it is found that the values of cylinder pressure for CSOME and NKOME in LHR engine are near to the diesel fuel in normal engine

    Permeability and nanoparticle filtration assessment of cordierite-bonded porous SiC ceramics

    Get PDF
    Cordierite bonded porous SiC ceramics having pore fractions (epsilon) between 0.33 and 0.72 and pore sizes of 6-50 mu m, flexural strength of 5-54 MPa, and elastic modulus of 6-42 GPa were prepared by oxide bonding at 1350 degrees C in air compacts of SiC, Al2O3 and MgO powders with petroleum coke (PC) as the sacrificial pore former. To test the applicability of the porous ceramics in the fluid flow field, air permeation behavior was studied with fluid superficial velocity from 0.083 to 0.90 m s(-1) and at 26-750 degrees C. The Darcian, k(1), and the non-Darcian, k(2), permeability coefficients were evaluated by fitting Forchheimer's equation to the experimental results. The temperature dependence of the permeability coefficients was explained from structural changes occurring during test conditions. The collection efficiency of filter ceramics (epsilon = 0.62-0.68) operating on removal of nanosized aerosol particles with sizes varying from 7 to 300 nm was determined by counting particles before and after filtration at a fluid superficial velocity of 0.1 m s(-1). Experimental results showed variation of collection efficiency from 96.7 to 99.9%. The size-selective fractional collection efficiency at different porosity levels was derived by using the well-known single-collector efficiency model considering some boundary conditions, and the model data were validated with experimental results. The test results were used for examination of the applicability of the filter ceramics in nanoparticle filtration processes

    Caste and identity processes among British Sikhs in the Midlands

    Get PDF
    This article examines the role of caste in the lives and identities of a small sample of young Sikhs in the English Midlands, using social psychological theory. In many academic writings, there is an implicit representation of caste as a negative aspect of South Asian culture and religion, and of caste identification as a means of oppressing vulnerable outgroups. Twenty-three young Sikhs were interviewed, and the qualitative data were analysed using Identity Process Theory. The following themes are discussed: (i) Caste as a Dormant Social Category, (ii) Anchoring the Caste Ingroup to Positive Social Representations, and (iii) Caste as an Inherent or Constructed Aspect of Identity? It is argued that neither caste nor caste-based prejudice appear to be prominent in the lives and identities of our interviewees but that, because caste is an important symbolic aspect of identity which can acquire salient in particular contexts, some Sikhs may wish to maintain this identity though endogamy. What is understood as caste-based prejudice can be better understood in terms of the downward comparison principle in social psychology. The implications for caste legislation are discussed

    Combining Next-Generation Sequencing Strategies for Rapid Molecular Resource Development from an Invasive Aphid Species, Aphis glycines

    Get PDF
    Aphids are one of the most important insect taxa in terms of ecology, evolutionary biology, genetics and genomics, and interactions with endosymbionts. Additionally, many aphids are serious pest species of agricultural and horticultural plants. Recent genetic and genomic research has expanded molecular resources for many aphid species, including the whole genome sequencing of the pea aphid, Acrythosiphon pisum. However, the invasive soybean aphid, Aphis glycines, lacks in any significant molecular resources.Two next-generation sequencing technologies (Roche-454 and Illumina GA-II) were used in a combined approach to develop both transcriptomic and genomic resources, including expressed genes and molecular markers. Over 278 million bp were sequenced among the two methods, resulting in 19,293 transcripts and 56,688 genomic sequences. From this data set, 635 SNPs and 1,382 microsatellite markers were identified. For each sequencing method, different soybean aphid biotypes were used which revealed potential biotype specific markers. In addition, we uncovered 39,822 bp of sequence that were related to the obligatory endosymbiont, Buchnera aphidicola, as well as sequences that suggest the presence of Hamiltonella defensa, a facultative endosymbiont.Molecular resources for an invasive, non-model aphid species were generated. Additionally, the power of next-generation sequencing to uncover endosymbionts was demonstrated. The resources presented here will complement ongoing molecular studies within the Aphididae, including the pea aphid whole genome, lead to better understanding of aphid adaptation and evolution, and help provide novel targets for soybean aphid control

    Tissue-Specific Transcriptomics of the Exotic Invasive Insect Pest Emerald Ash Borer (Agrilus planipennis)

    Get PDF
    BACKGROUND: The insect midgut and fat body represent major tissue interfaces that deal with several important physiological functions including digestion, detoxification and immune response. The emerald ash borer (Agrilus planipennis), is an exotic invasive insect pest that has killed millions of ash trees (Fraxinus spp.) primarily in the Midwestern United States and Ontario, Canada. However, despite its high impact status little knowledge exists for A. planipennis at the molecular level. METHODOLOGY AND PRINCIPAL FINDINGS: Newer-generation Roche-454 pyrosequencing was used to obtain 126,185 reads for the midgut and 240,848 reads for the fat body, which were assembled into 25,173 and 37,661 high quality expressed sequence tags (ESTs) for the midgut and the fat body of A. planipennis larvae, respectively. Among these ESTs, 36% of the midgut and 38% of the fat body sequences showed similarity to proteins in the GenBank nr database. A high number of the midgut sequences contained chitin-binding peritrophin (248)and trypsin (98) domains; while the fat body sequences showed high occurrence of cytochrome P450s (85) and protein kinase (123) domains. Further, the midgut transcriptome of A. planipennis revealed putative microbial transcripts encoding for cell-wall degrading enzymes such as polygalacturonases and endoglucanases. A significant number of SNPs (137 in midgut and 347 in fat body) and microsatellite loci (317 in midgut and 571 in fat body) were predicted in the A. planipennis transcripts. An initial assessment of cytochrome P450s belonging to various CYP clades revealed distinct expression patterns at the tissue level. CONCLUSIONS AND SIGNIFICANCE: To our knowledge this study is one of the first to illuminate tissue-specific gene expression in an invasive insect of high ecological and economic consequence. These findings will lay the foundation for future gene expression and functional studies in A. planipennis

    Transcriptomic Signatures of Ash (Fraxinus spp.) Phloem

    Get PDF
    Ash (Fraxinus spp.) is a dominant tree species throughout urban and forested landscapes of North America (NA). The rapid invasion of NA by emerald ash borer (Agrilus planipennis), a wood-boring beetle endemic to Eastern Asia, has resulted in the death of millions of ash trees and threatens billions more. Larvae feed primarily on phloem tissue, which girdles and kills the tree. While NA ash species including black (F. nigra), green (F. pennsylvannica) and white (F. americana) are highly susceptible, the Asian species Manchurian ash (F. mandshurica) is resistant to A. planipennis perhaps due to their co-evolutionary history. Little is known about the molecular genetics of ash. Hence, we undertook a functional genomics approach to identify the repertoire of genes expressed in ash phloem.Using 454 pyrosequencing we obtained 58,673 high quality ash sequences from pooled phloem samples of green, white, black, blue and Manchurian ash. Intriguingly, 45% of the deduced proteins were not significantly similar to any sequences in the GenBank non-redundant database. KEGG analysis of the ash sequences revealed a high occurrence of defense related genes. Expression analysis of early regulators potentially involved in plant defense (i.e. transcription factors, calcium dependent protein kinases and a lipoxygenase 3) revealed higher mRNA levels in resistant ash compared to susceptible ash species. Lastly, we predicted a total of 1,272 single nucleotide polymorphisms and 980 microsatellite loci, among which seven microsatellite loci showed polymorphism between different ash species.The current transcriptomic data provide an invaluable resource for understanding the genetic make-up of ash phloem, the target tissue of A. planipennis. These data along with future functional studies could lead to the identification/characterization of defense genes involved in resistance of ash to A. planipennis, and in future ash breeding programs for marker development

    Transcriptomics of the Bed Bug (Cimex lectularius)

    Get PDF
    BACKGROUND: Bed bugs (Cimex lectularius) are blood-feeding insects poised to become one of the major pests in households throughout the United States. Resistance of C. lectularius to insecticides/pesticides is one factor thought to be involved in its sudden resurgence. Despite its high-impact status, scant knowledge exists at the genomic level for C. lectularius. Hence, we subjected the C. lectularius transcriptome to 454 pyrosequencing in order to identify potential genes involved in pesticide resistance. METHODOLOGY AND PRINCIPAL FINDINGS: Using 454 pyrosequencing, we obtained a total of 216,419 reads with 79,596,412 bp, which were assembled into 35,646 expressed sequence tags (3902 contigs and 31744 singletons). Nearly 85.9% of the C. lectularius sequences showed similarity to insect sequences, but 44.8% of the deduced proteins of C. lectularius did not show similarity with sequences in the GenBank non-redundant database. KEGG analysis revealed putative members of several detoxification pathways involved in pesticide resistance. Lamprin domains, Protein Kinase domains, Protein Tyrosine Kinase domains and cytochrome P450 domains were among the top Pfam domains predicted for the C. lectularius sequences. An initial assessment of putative defense genes, including a cytochrome P450 and a glutathione-S-transferase (GST), revealed high transcript levels for the cytochrome P450 (CYP9) in pesticide-exposed versus pesticide-susceptible C. lectularius populations. A significant number of single nucleotide polymorphisms (296) and microsatellite loci (370) were predicted in the C. lectularius sequences. Furthermore, 59 putative sequences of Wolbachia were retrieved from the database. CONCLUSIONS: To our knowledge this is the first study to elucidate the genetic makeup of C. lectularius. This pyrosequencing effort provides clues to the identification of potential detoxification genes involved in pesticide resistance of C. lectularius and lays the foundation for future functional genomics studies

    Permeation Behavior of Oxide Bonded SiC Ceramics at High Temperature and Prediction of Pressure Drop in Candle Filters

    No full text
    Oxide-bonded silicon carbide supports of porosity ranging from 33% to 47% were prepared by heating powder compacts (SiC, clay and alumina) at 1400 degrees C in air with graphite acting as a pore former. The supports were spray-coated with an aqueous slurry of fine SiC powder (d(50)=15 mu m), then sintered to produce a filtering layer with thickness ranging from 116 to 200 mu m and average pore size ranging from 5 to 20 mu m. Airflow tests were performed on both supports and coated filters at temperatures ranging from 25 degrees to 700 degrees C and superficial velocities ranging from 0.02 to 0.9 m.s(-1). Experimental permeability coefficients were used to simulate the pressure drop behavior of hypothetical candle filters for industrial combustion/gasification processes (biomass combustion in water-tube steam boilers (BCSB), pressurized fluidized-bed combustion (PFBC) and integrated gasification combined cycle (IGCC)). The simulated permeation properties of the hypothetical candles were compared to those of commercial hot gas filters
    corecore