23 research outputs found

    Supporting Engineering Processes Utilizing Service-Oriented Grid Technology

    Get PDF
    Speeding up knowledge-intensive core processes in engineering and increas-ing the quality of their results is becoming more and more decisive, since economic pressure from national and international competitors and customers is rising. In particular, these demands exceed the organizational and infrastructural capacities of small and medium-sized enterprises (SME) by far. Hence, combining complementary core competencies across organizational boundaries is crucial for an enterprise's continuing success. Efficient and economically reasonable support of knowledge-intensive core processes in virtual organisations is therefore a predominant requirement for future IT infrastructures. The paradigm shift to service-orientation in Grid middleware opens the possibility to provide such support along the product lifecycle by employing a flexible software development approach, namely to compose applications from standard components, promising easier development and modification of Grid applications. In this paper, a service-oriented Grid computing approach is presented which aims at supporting distributed business processes in industry (see section 2 for industrial scenarios) from top level modelling, workflow design and exe-cution to actual Grid service code (presented in section 3). Parts of this gap between processes and code can be bridged by semi-automatically generated Grid service code. Orchestration of these Grid services is also automated by using a Grid-enabled workflow engine (see section 3). The feasibility of the proposed approach is demonstrated by presenting an exemplary process chain from the casting industry (see full paper)

    ESR, ENDOR and TRIPLE resonance studies of the primary donor radical cation P960+ in the photosynthetic bacterium Rhodopseudomonas viridis

    Get PDF
    The light-induced radical cation of the primary electron donor P960+• in photosynthetic reaction centers from Rhodopseudomonas viridis has been investigated by ESR, ENDOR and TRIPLE techniques. Both the comparison with the cation radical of monomeric bacteriochlorophyll b (BChl b) and with molecular-orbital calculations performed on P960+• using the results of an X-ray structure analysis, consistently show an asymmetric distribution of the unpaired electron over the two BChl b molecules which constitute P960+•. The possible relevance of this result for the primary electron transfer step in the reaction center is briefly discussed

    A Hybrid Peer-to-Peer and Grid Job Scheduling System for Teaming Up Desktop Resources with Computer Clusters to Perform Turbulence Simulations

    No full text
    Simulating turbulence in fluids is a fascinating part of physics which requires a high amount of computational power. Since for transitional Reynolds numbers each simulation run can be performed on a single contemporary CPU, turbulence studies are ideally suited for distributed computing where each node performs a simulation for a single initial condition. The approach presented in this paper makes use of unused computational power by integrating a dynamically changing set of possibly unreliable desktop PCs into a grid infrastructure of attentively administered dedicated cluster resources. The basic idea is to use peer-to-peer (P2P) technology for managing the set of computers and develop a "bridge" to interface the P2P network with a grid meta-scheduler which in turn interfaces with the grid middleware. This eliminates the need for central administration and continuous resource availability. It provides distributed scheduling, replicated storage and system monitoring capabilities. Experimental results obtained from an evaluation of our implementation show that our approach is both scalable and resilient in the presence of node failures and network churn

    Metabolic Flux Analysis in the Cloud

    No full text
    corecore